Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
fig_width = 6,
fig_height = 4,
dpi = 72
)
data.table::setDTthreads(2)
## ----setup--------------------------------------------------------------------
library(OpenSpecy)
## ---- eval=FALSE--------------------------------------------------------------
# run_app()
## ---- eval=FALSE--------------------------------------------------------------
# spectra <- read_any("path/to/your/data")
## -----------------------------------------------------------------------------
data("raman_hdpe")
## -----------------------------------------------------------------------------
spectral_map <- read_extdata("CA_tiny_map.zip") |>
read_any() # preserves some metadata
asp_example <- read_extdata("ftir_ldpe_soil.asp") |>
read_any()
ps_example <- read_extdata("ftir_ps.0") |>
read_any() # preserves some metadata
csv_example <- read_extdata("raman_hdpe.csv") |>
read_any()
json_example <- read_extdata("raman_hdpe.json") |>
read_any() # read in exactly as an OpenSpecy object
## -----------------------------------------------------------------------------
scratch_OpenSpecy <- as_OpenSpecy(x = seq(1000,2000, by = 5),
spectra = data.frame(runif(n = 201)),
metadata = list(file_name = "fake_noise"))
## -----------------------------------------------------------------------------
# Access the wavenumbers
scratch_OpenSpecy$wavenumber
## -----------------------------------------------------------------------------
# Access the spectra
scratch_OpenSpecy$spectra
## -----------------------------------------------------------------------------
# Access the metadata
scratch_OpenSpecy$metadata
## -----------------------------------------------------------------------------
# Performs checks to ensure that OpenSpecy objects are adhering to our standards;
# returns TRUE if it passes.
check_OpenSpecy(scratch_OpenSpecy)
# Checks only the object type to make sure it has OpenSpecy type
is_OpenSpecy(scratch_OpenSpecy)
## -----------------------------------------------------------------------------
print(scratch_OpenSpecy) # shows the raw object
## -----------------------------------------------------------------------------
summary(scratch_OpenSpecy) # summarizes the contents of the spectra
## -----------------------------------------------------------------------------
head(scratch_OpenSpecy) # shows the top wavenumbers and intensities
## ---- eval=F------------------------------------------------------------------
# write_spec(scratch_OpenSpecy, "test_scratch_OpenSpecy.yml", digits = 5)
# write_spec(scratch_OpenSpecy, "test_scratch_OpenSpecy.json", digits = 5)
# write_spec(scratch_OpenSpecy, "test_scratch_OpenSpecy.csv", digits = 5)
## ---- eval=F------------------------------------------------------------------
# hyperspecy <- as_hyperSpec(scratch_OpenSpecy)
## ---- fig.align="center", fig.width=5-----------------------------------------
plot(scratch_OpenSpecy) # quick and efficient
## ---- eval=F------------------------------------------------------------------
# # This will min-max normalize your data even if it isn't already but are not
# # changing your underlying data
# plotly_spec(scratch_OpenSpecy, json_example)
## ---- eval=F------------------------------------------------------------------
# heatmap_spec(spectral_map,
# z = spectral_map$metadata$x)
## ---- eval=F------------------------------------------------------------------
# interactive_plot(spectral_map, select = 100, z = spectral_map$metadata$x)
## -----------------------------------------------------------------------------
combined <- c_spec(list(asp_example, ps_example), range = "common", res = 8)
combined |>
plot()
## -----------------------------------------------------------------------------
plot(combined |> make_rel(), offset = 3, legend_var = "file_name")
## ---- eval=F------------------------------------------------------------------
# # Extract the 150th spectrum by index number.
# filter_spec(spectral_map, 150)
# # Extract the 150th spectrum by spectrum name.
# filter_spec(spectral_map, "9_5")
# # Extract the 150th spectrum by logical test.
# filter_spec(spectral_map, spectral_map$metadata$x == 9 & spectral_map$metadata$y == 5)
#
# #Test that they are the same.
# identical(filter_spec(spectral_map, 150), filter_spec(spectral_map, "9_5"))
#
# identical(filter_spec(spectral_map, 150), filter_spec(spectral_map, spectral_map$metadata$y == 9 & spectral_map$metadata$x == 5))
## -----------------------------------------------------------------------------
sample_spec(spectral_map, size = 5) |>
plot()
## ----eval=FALSE---------------------------------------------------------------
# processed <- process_spec(raman_hdpe)
## ---- eval=FALSE--------------------------------------------------------------
# plotly_spec(raman_hdpe, processed)
## ---- eval=F------------------------------------------------------------------
# # Automatic signal to noise ratio comparison
# sig_noise(processed, metric = "run_sig_over_noise") >
# sig_noise(raman_hdpe, metric = "run_sig_over_noise")
#
# #Manual signal to noise ratio calculation
# sig_noise(processed, metric = "sig_over_noise", sig_min = 2700, sig_max = 3000, noise_min = 1500, noise_max = 2500) >
# sig_noise(raman_hdpe, metric = "sig_over_noise", sig_min = 2700, sig_max = 3000, noise_min = 1500, noise_max = 2500)
## ---- eval=FALSE--------------------------------------------------------------
# #Remove CO2 region
# spectral_map_p <- spectral_map |>
# process_spec(flatten_range = T)
#
# #Calculate signal times noise
# spectral_map_p$metadata$sig_noise <- sig_noise(spectral_map_p, metric = "run_sig_over_noise")
#
# #Plot result
# heatmap_spec(spectral_map_p, sn = spectral_map_p$metadata$sig_noise, min_sn = 5)
## ---- eval=FALSE--------------------------------------------------------------
# trans_raman_hdpe <- raman_hdpe
# trans_raman_hdpe$spectra <- 2 - trans_raman_hdpe$spectra^2
#
# rev_trans_raman_hdpe <- trans_raman_hdpe |>
# adj_intens(type = "transmittance")
#
# plotly_spec(trans_raman_hdpe, rev_trans_raman_hdpe)
## ---- eval=FALSE--------------------------------------------------------------
# conform_spec(raman_hdpe, res = 8) |> # Convert res to 8 wavenumbers.
# summary()
#
# # Force one spectrum to have the exact same wavenumbers as another
# conform_spec(asp_example, range = ps_example$wavenumber, res = NULL) |>
# summary()
#
## ----smooth_intens, fig.cap = "Sample `raman_hdpe` spectrum with different smoothing polynomials."----
none <- make_rel(raman_hdpe)
p1 <- smooth_intens(raman_hdpe, polynomial = 1, derivative = 0, abs = F)
p4 <- smooth_intens(raman_hdpe, polynomial = 4, derivative = 0, abs = F)
c_spec(list(none, p1, p4)) |>
plot()
## ----compare_derivative, fig.cap = "Sample `raman_hdpe` spectrum with different derivatives."----
none <- make_rel(raman_hdpe)
window <- calc_window_points(raman_hdpe, 100) #Calculate the number of points needed for a 190 wavenumber window.
d1 <- smooth_intens(raman_hdpe, derivative = 1, window = window, abs = T)
d2 <- smooth_intens(raman_hdpe, derivative = 2, window = window, abs = T)
c_spec(list(none, d1, d2)) |>
plot()
## ----subtr_baseline, fig.cap = "Sample `raman_hdpe` spectrum with different degrees of background subtraction (Cowger et al., 2020)."----
alternative_baseline <- smooth_intens(raman_hdpe, polynomial = 1, window = 51,
derivative = 0, abs = F, make_rel = F) |>
flatten_range(min = 2700, max = 3200, make_rel = F) #Manual baseline with heavily smoothed spectra
none <- make_rel(raman_hdpe) #raw
d <- subtr_baseline(raman_hdpe, type = "manual",
baseline = alternative_baseline) #manual subtraction
d8 <- subtr_baseline(raman_hdpe, degree = 8) #standard imodpolyfit
dr <- subtr_baseline(raman_hdpe, refit_at_end = T) #optionally retain baseline noise with refitting
c_spec(list(none, d, d8, dr)) |>
plot(offset = 0.25)
## ----restrict_range, fig.cap = "Sample `raman_hdpe` spectrum with different degrees of range restriction."----
none <- make_rel(raman_hdpe)
#Specify one range
r1 <- restrict_range(raman_hdpe, min = 1000, max = 2000) |>
conform_spec(range = none$wavenumber, res = NULL, allow_na = T)
#Specify multiple ranges
r2 <- restrict_range(raman_hdpe, min = c(1000, 1800), max = c(1200, 2000)) |>
conform_spec(range = none$wavenumber, res = NULL, allow_na = T)
compare_ranges <- c_spec(list(none, r1, r2), range = "common")
# Common argument crops the ranges to the most common range between the spectra
# when joining.
plot(compare_ranges)
## ----flatten_range, fig.cap = "Sample `raman_hdpe` spectrum with different degrees of background subtraction (Cowger et al., 2020)."----
single <- filter_spec(spectral_map, 120) # Function to filter spectra by index
# number or name or a logical vector.
none <- make_rel(single)
f1 <- flatten_range(single) #default flattening the CO2 region.
f2 <- flatten_range(single, min = c(1000, 2500), max = c(1200, 3000)) #multple range example
compare_flats <- c_spec(list(none, f1, f2), range = "common")
plot(compare_flats, offset = 0.25)
## ---- eval=FALSE--------------------------------------------------------------
#
# raman_hdpe |> plot()
#
# make_rel(raman_hdpe) |> plot()
#
## ---- eval=F------------------------------------------------------------------
# get_lib(type = "derivative")
## ---- eval=F------------------------------------------------------------------
# lib <- load_lib(type = "derivative")
## ---- eval = F----------------------------------------------------------------
# data("test_lib")
# data("raman_hdpe")
#
# processed <- process_spec(x = raman_hdpe,
# conform_spec = F, #We will conform during matching.
# smooth_intens = T #Conducts the default derivative transformation.
# )
#
# # Check to make sure that the signal to noise ratio of the processed spectra is
# # greater than 10.
# print(sig_noise(processed) > 10)
#
# #Plot to assess the accuracy of the processing visually
# plotly_spec(raman_hdpe, processed)
## ---- eval=FALSE--------------------------------------------------------------
# matches <- match_spec(x = processed, library = test_lib, conform = T,
# add_library_metadata = "sample_name", top_n = 5)[order(match_val, decreasing = T)]
# print(matches[,c("object_id", "library_id", "match_val", "SpectrumType",
# "SpectrumIdentity")])
## ---- eval=FALSE--------------------------------------------------------------
# get_metadata(x = test_lib, logic = matches[[1,"library_id"]], rm_empty = T)
## ---- eval=FALSE--------------------------------------------------------------
# plotly_spec(processed, filter_spec(test_lib, logic = matches[[1,"library_id"]]))
## ---- eval = F----------------------------------------------------------------
# #Test library
# data("test_lib")
#
# #Example hyperspectral image with one cellulose acetate particle in the middle of it.
# test_map <- read_any(read_extdata("CA_tiny_map.zip"))
#
# #Process the map to conform to the library.
# test_map_processed <- process_spec(test_map, conform_spec_args = list(
# range = test_lib$wavenumber, res = NULL)
# )
#
# #Identify every spectrum in the map.
# identities <- match_spec(test_map_processed, test_lib, order = test_map,
# add_library_metadata = "sample_name", top_n = 1)
#
# #Relabel any spectra with low correlation coefficients.
# features <- ifelse(identities$match_val > 0.7,
# tolower(identities$polymer_class), "unknown")
#
# #Use spectra identities to identify particle regions as those that have the same material type and are touching.
# id_map <- def_features(x = test_map_processed, features = features)
#
# id_map$metadata$identities <- features
# # Also should probably be implemented automatically in the function when a
# # character value is provided.
# heatmap_spec(id_map, z = id_map$metadata$identities)
#
# # Collapses spectra to their median for each particle
# test_collapsed <- collapse_spec(id_map)
#
# # Plot spectra for each identified particle
# plot(test_collapsed, offset = 1, legend_var = "feature_id")
## ---- eval = F----------------------------------------------------------------
# # Read in test library
# data("test_lib")
#
# # Example dataset with one cellulose acetate particle.Conduct spatial smoothing to average each spectrum using adjacent spectra.
# test_map <- read_any(read_extdata("CA_tiny_map.zip"),
# spectral_smooth = T,
# sigma = c(1, 1, 1))
#
# # Characterize the signal times noise to determine where particle regions are.
# snr <- sig_noise(test_map, metric = "sig_times_noise")
#
# # Use this to find your particles and the idal signal times noise value to use for thresholding.
# heatmap_spec(test_map, z = snr)
#
# # Define the feature regions based on the threshold. Pixels from the background in the heatmap above were below 0.05 while my particle's pixels were above so I set snr > 0.05.
# id_map <- def_features(x = test_map, features = snr > 0.05)
#
# # Check that the thresholding worked as expected. Here we see a single particle region identified separate from the background.
# heatmap_spec(id_map, z = id_map$metadata$feature_id)
#
# # Collapse the spectra to their medians based on the threshold. Important to
# # note here that the particles with id -88 are anything from the FALSE values
# # so they should be your background.
# collapsed_id_map <- id_map |>
# collapse_spec()
#
# # Process the collapsed spectra to have the same transformation and units as the library.
# id_map_processed <- process_spec(collapsed_id_map, conform_spec_args = list(
# range = test_lib$wavenumber, res = NULL)
# )
#
# # Check the spectra for the background and particle. Background has considerable signal in it too suggesting double bounce along the edges of the particle.
# plot(id_map_processed, offset = 1, legend_var = "feature_id")
#
# # Get the matches of the collapsed spectra for the particles.
# matches <- match_spec(id_map_processed, test_lib,
# add_library_metadata = "sample_name", top_n = 1)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.