Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
screenshot.force = FALSE,
echo = TRUE,
rows.print = 5,
message = FALSE,
warning = FALSE)
set.seed(178643)
## ----requirement--------------------------------------------------------------
library(PLNmodels)
library(ggplot2)
## ----data_load----------------------------------------------------------------
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
## ----simple PLNnetwork--------------------------------------------------------
network_models <- PLNnetwork(Abundance ~ 1 + offset(log(Offset)), data = trichoptera)
## ----show---------------------------------------------------------------------
network_models
## ----collection criteria------------------------------------------------------
network_models$criteria %>% head() %>% knitr::kable()
## ----convergence criteria-----------------------------------------------------
network_models$convergence %>% head() %>% knitr::kable()
## ----diagnostic, fig.width=7, fig.height=5------------------------------------
plot(network_models, "diagnostic")
## ----plot, fig.width=7, fig.height=5------------------------------------------
plot(network_models)
## ----plot-reverse, fig.width=7, fig.height=5----------------------------------
plot(network_models, reverse = TRUE)
## ----path_coeff, fig.width=7, fig.height=7------------------------------------
coefficient_path(network_models, corr = TRUE) %>%
ggplot(aes(x = Penalty, y = Coeff, group = Edge, colour = Edge)) +
geom_line(show.legend = FALSE) + coord_trans(x="log10") + theme_bw()
## ----extract models-----------------------------------------------------------
model_pen <- getModel(network_models, network_models$penalties[20]) # give some sparsity
model_BIC <- getBestModel(network_models, "BIC") # if no criteria is specified, the best BIC is used
## ----future, eval = FALSE-----------------------------------------------------
# library(future)
# plan(multisession, workers = 2)
## ----stability----------------------------------------------------------------
n <- nrow(trichoptera)
subs <- replicate(10, sample.int(n, size = n/2), simplify = FALSE)
stability_selection(network_models, subsamples = subs)
## ----extract models stars-----------------------------------------------------
model_StARS <- getBestModel(network_models, "StARS")
## ----plot stability, fig.width=7, fig.height=5--------------------------------
plot(network_models, "stability")
## ----future_off, eval = FALSE-------------------------------------------------
# future::plan("sequential")
## ----show/print---------------------------------------------------------------
model_StARS
## ----extract------------------------------------------------------------------
my_graph <- plot(model_StARS, plot = FALSE)
my_graph
## ----stars_network, fig.width=7, fig.height=7---------------------------------
plot(model_StARS)
plot(model_StARS, type = "support", output = "corrplot")
## ----fitted, fig.cap = "fitted value vs. observation", fig.dim=c(7,5)---------
data.frame(
fitted = as.vector(fitted(model_StARS)),
observed = as.vector(trichoptera$Abundance)
) %>%
ggplot(aes(x = observed, y = fitted)) +
geom_point(size = .5, alpha =.25 ) +
scale_x_log10(limits = c(1,1000)) +
scale_y_log10(limits = c(1,1000)) +
theme_bw() + annotation_logticks()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.