R/monitor_dailyStatistic.R

Defines functions monitor_dailyStatistic

Documented in monitor_dailyStatistic

#' @keywords ws_monitor
#' @export
#' @title Calculate daily statistics
#' @param ws_monitor \emph{ws_monitor} object
#' @param FUN function used to collapse a day's worth of data into a single
#' number for each monitor in the ws_monitor object
#' @param dayStart one of \code{sunset|midnight|sunrise}
#' @param na.rm logical value indicating whether NA values should be ignored
#' @param minHours minimum number of valid data hours required to calculate each
#' daily statistic
#' @return A \emph{ws_monitor} object with daily statistics for the local timezone.
#' @description Calculates daily statistics for each monitor in \code{ws_monitor}.
#' @details Sunrise and sunset times are calculated based on the first monitor encountered.
#' This should be accurate enough for all use cases involving co-located monitors. Monitors
#' from different regions should have daily statistics calculated separately.
#' @note Note that the incoming \emph{ws_monitor} object should have UTC (GMT)
#' times and that this function calculates daily statistics based on local (clock) time.
#' If you choose a date range based on UTC times this may result in an insufficient
#' number of hours in the first and last daily records of the returned \emph{ws_monitor}
#' object.
#'
#' The returned \emph{ws_monitor} object has a daily time axis where each
#' \code{datetime} is set to the beginning of each day, 00:00:00, local time.
#' @examples
#' \donttest{
#' N_M <- monitor_subset(Northwest_Megafires, tlim=c(20150801,20150831))
#' WinthropID <- '530470010_01'
#' TwispID <- '530470009_01'
#' MethowValley <- monitor_subset(N_M,
#'                                tlim=c(20150801,20150831),
#'                                monitorIDs=c(WinthropID,TwispID))
#' MethowValley_dailyMean <- monitor_dailyStatistic(MethowValley,
#'                                                  FUN=get('mean'),
#'                                                  dayStart='midnight')
#' # Get the full Y scale
#' monitor_timeseriesPlot(MethowValley, style='gnats', col='transparent')
#' monitor_timeseriesPlot(MethowValley, monitorID=TwispID,
#'                        style='gnats', col='forestgreen', add=TRUE)
#' monitor_timeseriesPlot(MethowValley, monitorID=WinthropID,
#'                        style='gnats', col='purple', add=TRUE)
#' monitor_timeseriesPlot(MethowValley_dailyMean, monitorID=TwispID,
#'                        type='s', lwd=2, col='forestgreen', add=TRUE)
#' monitor_timeseriesPlot(MethowValley_dailyMean, monitorID=WinthropID,
#'                        type='s', lwd=2, col='purple', add=TRUE)
#' addAQILines()
#' addAQILegend("topleft", lwd=1, pch=NULL)
#' title("Winthrop & Twisp, Washington Daily Mean PM2.5, 2015")
#' }

monitor_dailyStatistic <- function(
  ws_monitor,
  FUN = get("mean"),
  dayStart = "midnight",
  na.rm = TRUE,
  minHours = 18
) {

  # Validate arguments ---------------------------------------------------------

  if ( monitor_isEmpty(ws_monitor) )
    stop("ws_monitor object contains zero monitors")

  # Pull out dataframes
  data <- ws_monitor$data
  meta <- ws_monitor$meta

  # Sanity check the timezones
  timezoneCount <- length(unique(meta$timezone))

  if ( timezoneCount > 1 ) {
    timezoneTable <- sort(table(ws_monitor$meta$timezone), decreasing = TRUE)
    timezone <- names(timezoneTable)[1]

    warning(paste0("Found ",
                   timezoneCount,
                   " timezones. Only '",
                   timezone,
                   "' will be used"))
  } else {
    timezone <- meta$timezone[1]
  }

  # NOTE:  We will generate only a single timeInfo dataframe to guarantee that
  # NOTE:  we apply the same daily aggregation logic to all monitors. Otherwise
  # NOTE:  we could potentially have edge cases with different numbers of days
  # NOTE:  for monitors in different timezones.
  timeInfo <- timeInfo(data[,1], meta$longitude[1], meta$latitude[1], timezone)

  # Create the day vector
  day <- rep(0,nrow(timeInfo))
  dayNum <- 0
  for ( i in seq_len(nrow(timeInfo)) ) {

    if (dayStart == "sunset") {
      hoursAfter <- difftime(timeInfo$localTime[i],
                             timeInfo$sunset[i],
                             units = "hours")
      if (hoursAfter > 0 & hoursAfter <= 1) dayNum <- dayNum + 1
    } else if (dayStart == "sunrise") {
      hoursAfter <- difftime(timeInfo$localTime[i],
                             timeInfo$sunrise[i],
                             units = "hours")
      if (hoursAfter > 0 & hoursAfter <= 1) dayNum <- dayNum + 1
    } else { # midnight by default
      if (lubridate::hour(timeInfo$localTime[i]) == 0) dayNum <- dayNum + 1
    }

    day[i] <- dayNum

  }

  # Only retain days with enough hours
  goodDays <- names( which( table(day) >= minHours ) ) # table() names == day #
  goodDayMask <- day %in% goodDays
  data <- data[goodDayMask,]
  day <- day[goodDayMask]

  # Create the aggregated dataset
  # NOTE:  Some functions don't work on the POSIXct datetime column.
  # NOTE:  But we still want to keep it. So we'll start by calculating the mean
  # NOTE:  so as to have an "average" POSIXct for each grouping. Then we get the
  # NOTE:  dayStart for each day.
  dailyMean <- stats::aggregate(data, by=list(day), FUN=get("mean"), na.rm=na.rm)
  # NOTE:  aggregate() resets datetime to the computer timezone which causes
  # NOTE:  trouble later on.
  dailyMean$datetime <- lubridate::with_tz(dailyMean$datetime, tzone = timezone)
  dayStarts <- lubridate::floor_date(dailyMean$datetime, unit="day")

  # Sanity check
  if ( any(duplicated(dayStarts)) ) {
    stop(paste0("Duplicate dayStarts created in monitor_dailyStatistic.\n",
                "Is the 'data$datetime' column properly ordered?"))
  }

  # Convert the dayStart back to numeric so that it can be operated on by the
  # likes of 'sum'.
  data$datetime <- as.numeric(data$datetime)

  # Get the daily count of valid data points
  validData <- !is.na(data)
  dailyValids <- stats::aggregate(validData, by=list(day), FUN=get("sum"))

  # Get the daily statistic
  dailyStats <- stats::aggregate(data, by=list(day), FUN=FUN, na.rm=na.rm)
  dailyStats$datetime <- dayStarts

  # Only retain the original columns (omit "Group.1", etc.)
  dailyValids <- dailyValids[,names(data)]
  dailyStats <- dailyStats[,names(data)]

  # Mask for days with enough valid data points
  insufficientDataMask <- dailyValids < minHours # returns a matrix
  insufficientDataMask[,1] <- FALSE # never mask out the first ('datetime') column

  # Apply the mask
  dailyStats[insufficientDataMask] <- NA

  # Create a new ws_monitor object
  ws_monitor <- list(meta=meta, data=dailyStats)
  ws_monitor <- structure(ws_monitor, class = c("ws_monitor", "list"))

  return (ws_monitor)

}

Try the PWFSLSmoke package in your browser

Any scripts or data that you put into this service are public.

PWFSLSmoke documentation built on July 8, 2020, 7:19 p.m.