Nothing
# @file PopulationSettings.R
#
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of CohortMethod
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' create the study population settings
#'
#' @param binary Forces the outcomeCount to be 0 or 1 (use for binary prediction problems)
#' @param includeAllOutcomes (binary) indicating whether to include people with outcomes who are not observed for the whole at risk period
#' @param firstExposureOnly Should only the first exposure per subject be included? Note that
#' this is typically done in the \code{createStudyPopulation} function,
#' @param washoutPeriod The mininum required continuous observation time prior to index
#' date for a person to be included in the cohort.
#' @param removeSubjectsWithPriorOutcome Remove subjects that have the outcome prior to the risk window start?
#' @param priorOutcomeLookback How many days should we look back when identifying prior outcomes?
#' @param requireTimeAtRisk Should subject without time at risk be removed?
#' @param minTimeAtRisk The minimum number of days at risk required to be included
#' @param riskWindowStart The start of the risk window (in days) relative to the index date (+
#' days of exposure if the \code{addExposureDaysToStart} parameter is
#' specified).
#' @param startAnchor The anchor point for the start of the risk window. Can be "cohort start" or "cohort end".
#' @param riskWindowEnd The end of the risk window (in days) relative to the index data (+
#' days of exposure if the \code{addExposureDaysToEnd} parameter is
#' specified).
#' @param endAnchor The anchor point for the end of the risk window. Can be "cohort start" or "cohort end".
#' @param restrictTarToCohortEnd If using a survival model and you want the time-at-risk to end at the cohort end date set this to T
#' @return
#' An object of type populationSettings containing all the settings required
#' for creating the study population
#' @examples
#' # Create study population settings with a washout period of 30 days and a
#' # risk window of 1 to 90 days
#' populationSettings <- createStudyPopulationSettings(washoutPeriod = 30,
#' riskWindowStart = 1,
#' riskWindowEnd = 90)
#' @export
createStudyPopulationSettings <- function(
binary = TRUE,
includeAllOutcomes = TRUE,
firstExposureOnly = FALSE,
washoutPeriod = 0,
removeSubjectsWithPriorOutcome = TRUE,
priorOutcomeLookback = 99999,
requireTimeAtRisk = TRUE,
minTimeAtRisk = 364,
riskWindowStart = 1,
startAnchor = "cohort start",
riskWindowEnd = 365,
endAnchor = "cohort start",
restrictTarToCohortEnd = FALSE) {
checkIsClass(binary, "logical")
checkNotNull(binary)
checkIsClass(includeAllOutcomes, "logical")
checkNotNull(includeAllOutcomes)
checkIsClass(firstExposureOnly, "logical")
checkNotNull(firstExposureOnly)
checkIsClass(washoutPeriod, c("numeric", "integer"))
checkNotNull(washoutPeriod)
checkHigherEqual(washoutPeriod, 0)
checkIsClass(removeSubjectsWithPriorOutcome, "logical")
checkNotNull(removeSubjectsWithPriorOutcome)
checkIsClass(priorOutcomeLookback, c("numeric", "integer"))
checkNotNull(priorOutcomeLookback)
checkHigherEqual(priorOutcomeLookback, 0)
checkIsClass(requireTimeAtRisk, "logical")
checkNotNull(requireTimeAtRisk)
if (requireTimeAtRisk) {
checkIsClass(minTimeAtRisk, c("numeric", "integer"))
checkNotNull(minTimeAtRisk)
checkHigherEqual(minTimeAtRisk, 0)
}
checkIsClass(riskWindowStart, c("numeric", "integer"))
checkNotNull(riskWindowStart)
checkIsClass(startAnchor, c("character"))
checkNotNull(startAnchor)
if (!startAnchor %in% c("cohort start", "cohort end")) {
stop("Incorrect startAnchor")
}
checkIsClass(riskWindowEnd, c("numeric", "integer"))
checkNotNull(riskWindowEnd)
checkIsClass(endAnchor, c("character"))
checkNotNull(endAnchor)
if (!endAnchor %in% c("cohort start", "cohort end")) {
stop("Incorrect endAnchor")
}
if (startAnchor == endAnchor) {
checkHigherEqual(riskWindowEnd, riskWindowStart)
}
checkIsClass(restrictTarToCohortEnd, "logical")
checkNotNull(restrictTarToCohortEnd)
if (requireTimeAtRisk) {
if (startAnchor == endAnchor) {
if (minTimeAtRisk > (riskWindowEnd - riskWindowStart)) {
warning("issue: minTimeAtRisk is greater than max possible time-at-risk")
}
}
}
result <- list(
binary = binary,
includeAllOutcomes = includeAllOutcomes,
firstExposureOnly = firstExposureOnly,
washoutPeriod = washoutPeriod,
removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome,
priorOutcomeLookback = priorOutcomeLookback,
requireTimeAtRisk = requireTimeAtRisk,
minTimeAtRisk = minTimeAtRisk,
riskWindowStart = riskWindowStart,
startAnchor = startAnchor,
riskWindowEnd = riskWindowEnd,
endAnchor = endAnchor,
restrictTarToCohortEnd = restrictTarToCohortEnd
)
class(result) <- "populationSettings"
return(result)
}
#' Create a study population
#'
#' @details
#' Create a study population by enforcing certain inclusion and exclusion criteria, defining
#' a risk window, and determining which outcomes fall inside the risk window.
#'
#' @param plpData An object of type \code{plpData} as generated using
#' \code{getplpData}.
#' @param outcomeId The ID of the outcome.
#' @param populationSettings An object of class populationSettings created using \code{createPopulationSettings}
#' @param population If specified, this population will be used as the starting point instead of the
#' cohorts in the \code{plpData} object.
#'
#' @return
#' A data frame specifying the study population. This data frame will have the following columns:
#' \describe{
#' \item{rowId}{A unique identifier for an exposure}
#' \item{subjectId}{The person ID of the subject}
#' \item{cohortStartdate}{The index date}
#' \item{outcomeCount}{The number of outcomes observed during the risk window}
#' \item{timeAtRisk}{The number of days in the risk window}
#' \item{survivalTime}{The number of days until either the outcome or the end of the risk window}
#' }
#' @examples
#' \donttest{ \dontshow{ # takes too long }
#' data("simulationProfile")
#' plpData <- simulatePlpData(simulationProfile, n = 100)
#' # Create study population, require time at risk of 30 days. The risk window is 1 to 90 days.
#' populationSettings <- createStudyPopulationSettings(requireTimeAtRisk = TRUE,
#' minTimeAtRisk = 30,
#' riskWindowStart = 1,
#' riskWindowEnd = 90)
#' population <- createStudyPopulation(plpData, outcomeId = 3, populationSettings)
#' }
#' @export
createStudyPopulation <- function(
plpData,
outcomeId = plpData$metaData$databaseDetails$outcomeIds[1],
populationSettings = createStudyPopulationSettings(),
population = NULL) {
start <- Sys.time()
checkIsClass(populationSettings, "populationSettings")
binary <- populationSettings$binary
includeAllOutcomes <- populationSettings$includeAllOutcomes
firstExposureOnly <- populationSettings$firstExposureOnly
washoutPeriod <- populationSettings$washoutPeriod
removeSubjectsWithPriorOutcome <- populationSettings$removeSubjectsWithPriorOutcome
priorOutcomeLookback <- populationSettings$priorOutcomeLookback
requireTimeAtRisk <- populationSettings$requireTimeAtRisk
minTimeAtRisk <- populationSettings$minTimeAtRisk
riskWindowStart <- populationSettings$riskWindowStart
startAnchor <- populationSettings$startAnchor
riskWindowEnd <- populationSettings$riskWindowEnd
endAnchor <- populationSettings$endAnchor
restrictTarToCohortEnd <- populationSettings$restrictTarToCohortEnd
# parameter checks
if (!inherits(x = plpData, what = c("plpData"))) {
ParallelLogger::logError("Check plpData format")
stop("Wrong plpData input")
}
ParallelLogger::logDebug(paste0("outcomeId: ", outcomeId))
checkNotNull(outcomeId)
ParallelLogger::logDebug(paste0("binary: ", binary))
ParallelLogger::logDebug(paste0("includeAllOutcomes: ", includeAllOutcomes))
ParallelLogger::logDebug(paste0("firstExposureOnly: ", firstExposureOnly))
ParallelLogger::logDebug(paste0("washoutPeriod: ", washoutPeriod))
ParallelLogger::logDebug(paste0("removeSubjectsWithPriorOutcome: ", removeSubjectsWithPriorOutcome))
ParallelLogger::logDebug(paste0("priorOutcomeLookback: ", priorOutcomeLookback))
ParallelLogger::logDebug(paste0("requireTimeAtRisk: ", requireTimeAtRisk))
ParallelLogger::logDebug(paste0("minTimeAtRisk: ", minTimeAtRisk))
ParallelLogger::logDebug(paste0("restrictTarToCohortEnd: ", restrictTarToCohortEnd))
ParallelLogger::logDebug(paste0("riskWindowStart: ", riskWindowStart))
ParallelLogger::logDebug(paste0("startAnchor: ", startAnchor))
ParallelLogger::logDebug(paste0("riskWindowEnd: ", riskWindowEnd))
ParallelLogger::logDebug(paste0("endAnchor: ", endAnchor))
ParallelLogger::logDebug(paste0("restrictTarToCohortEnd: ", restrictTarToCohortEnd))
if (is.null(population)) {
population <- plpData$cohorts
} else {
population <- plpData$cohorts %>%
dplyr::filter(.data$rowId %in% (population %>% dplyr::pull(.data$rowId)))
}
# save the metadata (should have the ?targetId, outcomeId, plpDataSettings and population settings)
metaData <- attr(population, "metaData")
metaData$restrictPlpDataSettings <- plpData$metaData$restrictPlpDataSettings
metaData$outcomeId <- outcomeId
metaData$populationSettings <- populationSettings # this will overwrite an existing setting
# set the existing attrition
if (is.null(metaData$attrition)) {
metaData$attrition <- attr(plpData$cohorts, "metaData")$attrition
}
if (!is.null(metaData$attrition)) {
metaData$attrition <- data.frame(
outcomeId = metaData$attrition$outcomeId,
description = metaData$attrition$description,
targetCount = metaData$attrition$targetCount,
uniquePeople = metaData$attrition$uniquePeople,
outcomes = metaData$attrition$outcomes
)
if (sum(metaData$attrition$outcomeId == outcomeId) > 0) {
metaData$attrition <- metaData$attrition[metaData$attrition$outcomeId == outcomeId, ]
} else {
metaData$attrition <- NULL
}
}
# ADD TAR
oId <- outcomeId
population <- population %>%
dplyr::mutate(
startAnchor = startAnchor, startDay = riskWindowStart,
endAnchor = endAnchor, endDay = riskWindowEnd
) %>%
dplyr::mutate(
tarStart = ifelse(.data$startAnchor == "cohort start", .data$startDay, .data$startDay + .data$daysToCohortEnd),
tarEnd = ifelse(.data$endAnchor == "cohort start", .data$endDay, .data$endDay + .data$daysToCohortEnd)
) %>%
dplyr::mutate(tarEnd = ifelse(.data$tarEnd > .data$daysToObsEnd, .data$daysToObsEnd, .data$tarEnd))
# censor at cohortEndDate:
if (max(population$daysToCohortEnd) > 0 && restrictTarToCohortEnd) {
ParallelLogger::logInfo("Restricting tarEnd to end of target cohort")
population <- population %>% dplyr::mutate(tarEnd = ifelse(.data$tarEnd > .data$daysToCohortEnd, .data$daysToCohortEnd, .data$tarEnd))
}
# get the outcomes during TAR
outcomeTAR <- plpData$outcomes %>%
dplyr::filter(.data$outcomeId == get("oId")) %>%
dplyr::inner_join(population, by = "rowId") %>%
dplyr::select("rowId", "daysToEvent", "tarStart", "tarEnd") %>%
dplyr::filter(.data$daysToEvent >= .data$tarStart & .data$daysToEvent <= .data$tarEnd)
# prevent warnings when no results left
if (nrow(as.data.frame(outcomeTAR)) > 0) {
outcomeTAR <- outcomeTAR %>%
dplyr::group_by(.data$rowId) %>%
dplyr::summarise(
first = min(.data$daysToEvent),
ocount = length(unique(.data$daysToEvent))
) %>%
dplyr::select("rowId", "first", "ocount")
} else {
outcomeTAR <- outcomeTAR %>%
dplyr::mutate(first = 0, ocount = 0) %>%
dplyr::select("rowId", "first", "ocount")
}
population <- population %>%
dplyr::left_join(outcomeTAR, by = "rowId")
# get the initial row
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "Initial plpData cohort or population",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
if (firstExposureOnly) {
ParallelLogger::logTrace(paste("Restricting to first exposure"))
if (nrow(population) > dplyr::n_distinct(population$subjectId)) {
population <- population %>%
dplyr::arrange(.data$subjectId, .data$cohortStartDate) %>%
dplyr::group_by(.data$subjectId) %>%
dplyr::filter(dplyr::row_number(.data$subjectId) == 1)
}
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "First Exposure",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if (washoutPeriod) {
ParallelLogger::logTrace(paste("Requiring", washoutPeriod, "days of observation prior index date"))
msg <- paste("At least", washoutPeriod, "days of observation prior")
population <- population %>%
dplyr::mutate(washoutPeriod = washoutPeriod) %>%
dplyr::filter(.data$daysFromObsStart >= .data$washoutPeriod)
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = msg,
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if (removeSubjectsWithPriorOutcome) {
ParallelLogger::logTrace("Removing subjects with prior outcomes (if any)")
# get the outcomes during TAR
outcomeBefore <- plpData$outcomes %>%
dplyr::filter(outcomeId == get("oId")) %>%
dplyr::inner_join(population, by = "rowId") %>%
dplyr::select("rowId", "daysToEvent", "tarStart") %>%
dplyr::filter(.data$daysToEvent < .data$tarStart & .data$daysToEvent > -get("priorOutcomeLookback"))
if (nrow(as.data.frame(outcomeBefore)) > 0) {
outcomeBefore %>%
dplyr::group_by(.data$rowId) %>%
dplyr::summarise(first = min(.data$daysToEvent)) %>%
dplyr::select("rowId")
}
population <- population %>%
dplyr::filter(!.data$rowId %in% outcomeBefore$rowId)
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "No prior outcome",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if (requireTimeAtRisk) {
if (includeAllOutcomes) {
ParallelLogger::logTrace("Removing non outcome subjects with insufficient time at risk (if any)")
population <- population %>%
dplyr::filter(!is.na(.data$first) | .data$tarEnd >= .data$tarStart + minTimeAtRisk)
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "Removing non-outcome subjects with insufficient time at risk (if any)",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
} else {
ParallelLogger::logTrace("Removing subjects with insufficient time at risk (if any)")
population <- population %>%
dplyr::filter(.data$tarEnd >= .data$tarStart + minTimeAtRisk)
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "Removing subjects with insufficient time at risk (if any)",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
} else {
# remve any patients with negative timeAtRisk
ParallelLogger::logTrace("Removing subjects with no time at risk (if any)")
population <- population %>%
dplyr::filter(.data$tarEnd >= .data$tarStart)
attrRow <- population %>%
dplyr::group_by() %>%
dplyr::summarise(
outcomeId = get("oId"),
description = "Removing subjects with no time at risk (if any))",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first))
)
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
# now add columns to pop
if (binary) {
ParallelLogger::logInfo("Outcome is 0 or 1")
population <- population %>%
dplyr::mutate(outcomeCount = ifelse(is.na(.data$ocount), 0, 1))
} else {
ParallelLogger::logTrace("Outcome is count")
population <- population %>%
dplyr::mutate(outcomeCount = ifelse(is.na(.data$ocount), 0, .data$ocount))
}
population <- population %>%
dplyr::mutate(
timeAtRisk = .data$tarEnd - .data$tarStart + 1,
survivalTime = ifelse(.data$outcomeCount == 0, .data$tarEnd - .data$tarStart + 1, .data$first - .data$tarStart + 1),
daysToEvent = .data$first
) %>%
dplyr::select(
"rowId", "subjectId", "targetId", "cohortStartDate", "daysFromObsStart",
"daysToCohortEnd", "daysToObsEnd", "ageYear", "gender",
"outcomeCount", "timeAtRisk", "daysToEvent", "survivalTime"
)
# check outcome still there
if (sum(!is.na(population$daysToEvent)) == 0) {
ParallelLogger::logWarn("No outcomes left...")
return(NULL)
}
ParallelLogger::logInfo(
"Population created with: ", nrow(population),
" observations, ", length(unique(population$subjectId)),
" unique subjects and ", sum(population$outcomeCount), " outcomes"
)
population <- as.data.frame(population)
attr(population, "metaData") <- metaData
delta <- Sys.time() - start
ParallelLogger::logInfo("Population created in ", signif(delta, 3), " ", attr(delta, "units"))
return(population)
}
getCounts <- function(population, description = "") {
persons <- length(unique(population$subjectId))
targets <- nrow(population)
counts <- data.frame(
description = description,
targetCount = targets,
uniquePeople = persons
)
return(counts)
}
getCounts2 <- function(cohort, outcomes, description = "") {
persons <- length(unique(cohort$subjectId))
targets <- nrow(cohort)
outcomes <- stats::aggregate(cbind(count = outcomeId) ~ outcomeId,
data = outcomes,
FUN = function(x) {
NROW(x)
}
)
counts <- data.frame(
outcomeId = outcomes$outcomeId,
description = description,
targetCount = targets,
uniquePeople = persons,
outcomes = outcomes$count
)
return(counts)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.