R/ThresholdSummary.R

Defines functions diagnosticOddsRatio negativeLikelihoodRatio positiveLikelihoodRatio falseOmissionRate negativePredictiveValue falseDiscoveryRate positivePredictiveValue specificity falsePositiveRate falseNegativeRate sensitivity accuracy f1Score checkToByTwoTableInputs stdca getThresholdSummary_survival getThresholdSummary_binary getThresholdSummary

Documented in getThresholdSummary

# @file ThresholdSummary.R
#
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitatons under the License.
#' Calculate all measures for sparse ROC
#'
#' @details
#' Calculates the TP, FP, TN, FN, TPR, FPR, accuracy, PPF, FOR and Fmeasure
#' from a prediction object
#'
#' @param prediction            A prediction object
#' @param predictionType        The type of prediction (binary or survival)
#' @param typeColumn            A column that is used to stratify the results
#'
#' @return
#' A data.frame with TP, FP, TN, FN, TPR, FPR, accuracy, PPF, FOR and Fmeasure
#' @examples
#' prediction <- data.frame(rowId = 1:100, 
#'                          outcomeCount = stats::rbinom(1:100, 1, prob=0.5),
#'                          value = runif(100), 
#'                          evaluation = rep("Train", 100))
#' summary <- getThresholdSummary(prediction)
#' str(summary)
#' @export
getThresholdSummary <- function(
    prediction,
    predictionType = "binary",
    typeColumn = "evaluation") {
  evaluation <- do.call(
    what = paste0("getThresholdSummary_", predictionType),
    args = list(
      prediction = prediction,
      evalColumn = typeColumn,
      timepoint = attr(prediction, "metaData")$timepoint
    )
  )

  return(evaluation)
}



#' Calculate all measures for sparse ROC when prediction is bianry classification
#'
#' @details
#' Calculates the TP, FP, TN, FN, TPR, FPR, accuracy, PPF, FOR and Fmeasure
#' from a prediction object
#'
#' @param prediction            A prediction object
#' @param evalColumn            A column that is used to stratify the results
#' @param ...                   Other inputs
#'
#' @return
#' A data.frame with all the measures
#' @keywords internal
#' @noRd
getThresholdSummary_binary <- function(prediction, evalColumn, ...) {
  result <- c()
  evalTypes <- unique(as.data.frame(prediction)[, evalColumn])

  for (evalType in evalTypes) {
    predictionOfInterest <- prediction %>% dplyr::filter(.data[[evalColumn]] == evalType)

    # do input checks
    if (nrow(predictionOfInterest) < 1) {
      warning("sparse threshold summary not calculated due to empty dataset")
      return(NULL)
    }

    n <- nrow(predictionOfInterest)
    P <- sum(predictionOfInterest$outcomeCount > 0)
    N <- n - P

    if (N == 0) {
      warning("Number of negatives is zero")
      return(NULL)
    }
    if (P == 0) {
      warning("Number of positives is zero")
      return(NULL)
    }

    # add the preference score:
    proportion <- sum(predictionOfInterest$outcomeCount > 0) / nrow(predictionOfInterest)
    # ISSUE WITH CAL # remove any predictions of 1
    predictionOfInterest$value[predictionOfInterest$value == 1] <- 0.99999999
    x <- exp(log(predictionOfInterest$value / (1 - predictionOfInterest$value)) - log(proportion / (1 - proportion)))
    predictionOfInterest$preferenceScore <- x / (x + 1)

    # sort prediction
    predictionOfInterest <- predictionOfInterest[order(-predictionOfInterest$value), ]

    # because of numerical precision issues (I think), in very rare cases the preferenceScore
    # is not monotonically decreasing after this sort (it should follow the predictions)
    # as a fix I remove the troublesome row from influencing the thresholdSummary
    if (!all(predictionOfInterest$preferenceScore == cummin(predictionOfInterest$preferenceScore))) {
      troubleRow <- (which((predictionOfInterest$preferenceScore == cummin(predictionOfInterest$preferenceScore)) == FALSE))
      predictionOfInterest <- predictionOfInterest[-troubleRow, ]
    }

    # create indexes
    if (length(predictionOfInterest$preferenceScore) > 100) {
      indexesOfInt <- c(
        1:100,
        seq(
          1,
          length(predictionOfInterest$preferenceScore),
          floor(length(predictionOfInterest$preferenceScore) / 100)
        ),
        length(predictionOfInterest$preferenceScore)
      )
    } else {
      indexesOfInt <- 1:length(predictionOfInterest$preferenceScore)
    }
    pt <- unique(predictionOfInterest$value[indexesOfInt])
    indexesOfInt <- unique(unlist(lapply(pt, function(pt) max(which(predictionOfInterest$value >= pt))))) # made this >= to match net benefit

    # get thresholds
    predictionThreshold <- predictionOfInterest$value[indexesOfInt]
    preferenceThreshold <- predictionOfInterest$preferenceScore[indexesOfInt]

    # improve speed create vector with cum sum
    lab.order <- ifelse(predictionOfInterest$outcomeCount > 0, 1, 0)
    temp.cumsum <- rep(0, length(lab.order))
    temp.cumsum[lab.order == 0] <- 1:sum(lab.order == 0)
    temp.cumsum[lab.order == 1] <- which(lab.order == 1, arr.ind = TRUE) - 1:sum(lab.order == 1)
    TP <- sapply(indexesOfInt, function(x) x - temp.cumsum[x])
    FP <- sapply(indexesOfInt, function(x) temp.cumsum[x])

    TN <- N - FP
    FN <- P - TP

    positiveCount <- TP + FP
    negativeCount <- TN + FN
    trueCount <- TP + FN
    falseCount <- TN + FP
    truePositiveCount <- TP
    trueNegativeCount <- TN
    falsePositiveCount <- FP
    falseNegativeCount <- FN

    f1Score <- f1Score(TP, TN, FN, FP)
    accuracy <- accuracy(TP, TN, FN, FP)
    sensitivity <- sensitivity(TP, TN, FN, FP)
    falseNegativeRate <- falseNegativeRate(TP, TN, FN, FP)
    falsePositiveRate <- falsePositiveRate(TP, TN, FN, FP)
    specificity <- specificity(TP, TN, FN, FP)
    positivePredictiveValue <- positivePredictiveValue(TP, TN, FN, FP)
    falseDiscoveryRate <- falseDiscoveryRate(TP, TN, FN, FP)
    negativePredictiveValue <- negativePredictiveValue(TP, TN, FN, FP)
    falseOmissionRate <- falseOmissionRate(TP, TN, FN, FP)
    positiveLikelihoodRatio <- positiveLikelihoodRatio(TP, TN, FN, FP)
    negativeLikelihoodRatio <- negativeLikelihoodRatio(TP, TN, FN, FP)
    diagnosticOddsRatio <- diagnosticOddsRatio(TP, TN, FN, FP)

    result <- rbind(
      result,
      data.frame(
        evaluation = evalType,
        predictionThreshold = predictionThreshold,
        preferenceThreshold = preferenceThreshold,
        positiveCount = positiveCount,
        negativeCount = negativeCount,
        trueCount = trueCount,
        falseCount = falseCount,
        truePositiveCount = truePositiveCount,
        trueNegativeCount = trueNegativeCount,
        falsePositiveCount = falsePositiveCount,
        falseNegativeCount = falseNegativeCount,
        f1Score = f1Score,
        accuracy = accuracy,
        sensitivity = sensitivity,
        falseNegativeRate = falseNegativeRate,
        falsePositiveRate = falsePositiveRate,
        specificity = specificity,
        positivePredictiveValue = positivePredictiveValue,
        falseDiscoveryRate = falseDiscoveryRate,
        negativePredictiveValue = negativePredictiveValue,
        falseOmissionRate = falseOmissionRate,
        positiveLikelihoodRatio = positiveLikelihoodRatio,
        negativeLikelihoodRatio = negativeLikelihoodRatio,
        diagnosticOddsRatio = diagnosticOddsRatio
      )
    )
  }

  result <- as.data.frame(result)
  return(result)
}

getThresholdSummary_survival <- function(prediction, evalColumn, timepoint, ...) {
  result <- c()
  evalTypes <- unique(as.data.frame(prediction)[, evalColumn])

  for (evalType in evalTypes) {
    predictionOfInterest <- prediction %>%
      dplyr::filter(.data[[evalColumn]] == evalType)

    t <- predictionOfInterest$survivalTime
    y <- ifelse(predictionOfInterest$outcomeCount > 0, 1, 0)

    S <- survival::Surv(t, y)
    p <- predictionOfInterest$value

    # add netbenefit
    preddat <- data.frame(
      p = p / max(p),
      t = t,
      y = y
    )

    nbSummary <- tryCatch(
      {
        xstart <- max(min(preddat$p), 0.001)
        xstop <- min(max(preddat$p), 0.99)
        stdca(
          data = preddat,
          outcome = "y",
          ttoutcome = "t",
          timepoint = timepoint,
          predictors = "p",
          xstart = xstart,
          xstop = xstop,
          xby = (xstop - xstart) / 100,
          smooth = FALSE,
          graph = FALSE
        )
      },
      error = function(e) {
        ParallelLogger::logError(e)
        return(NULL)
      }
    )

    if (!is.null(nbSummary$net.benefit)) {
      tempResult <- as.data.frame(nbSummary$net.benefit)
      tempResult$evaluation <- evalType

      result <- rbind(
        result,
        tempResult
      )
    }
  }

  return(result)
}




###############################
#
#   FUNCTIONS TO HELP
###############################

# taken from the dca package @ http://www.danieldsjoberg.com/dca/articles/survival-outcomes.html

stdca <- function(
    data, outcome, ttoutcome, timepoint, predictors, xstart = 0.01,
    xstop = 0.99, xby = 0.01, ymin = -0.05, probability = NULL,
    harm = NULL, graph = TRUE, intervention = FALSE, interventionper = 100,
    smooth = FALSE, loess.span = 0.1, cmprsk = FALSE) {
  data <- data[stats::complete.cases(data[c(
    outcome, ttoutcome,
    predictors
  )]), c(outcome, ttoutcome, predictors)]
  if ((length(data[!(data[outcome] == 0 | data[outcome] ==
    1), outcome]) > 0) && cmprsk == FALSE) {
    stop("outcome must be coded as 0 and 1")
  }
  if (!inherits(x = data, what = "data.frame")) {
    stop("Input data must be class data.frame")
  }
  if (xstart < 0 || xstart > 1) {
    stop("xstart must lie between 0 and 1")
  }
  if (xstop < 0 || xstop > 1) {
    stop("xstop must lie between 0 and 1")
  }
  if (xby <= 0 || xby >= 1) {
    stop("xby must lie between 0 and 1")
  }
  if (xstart >= xstop) {
    stop("xstop must be larger than xstart")
  }
  pred.n <- length(predictors)
  if (length(probability) > 0 && pred.n != length(probability)) {
    stop("Number of probabilities specified must be the same as the number of predictors being checked.")
  }
  if (length(harm) > 0 && pred.n != length(harm)) {
    stop("Number of harms specified must be the same as the number of predictors being checked.")
  }
  if (length(harm) == 0) {
    harm <- rep(0, pred.n)
  }
  if (length(probability) == 0) {
    probability <- rep(TRUE, pred.n)
  }
  if (length(predictors[predictors == "all" | predictors ==
    "none"])) {
    stop("Prediction names cannot be equal to all or none.")
  }
  for (m in 1:pred.n) {
    if (probability[m] != TRUE && probability[m] != FALSE) {
      stop("Each element of probability vector must be TRUE or FALSE")
    }
    if (probability[m] == TRUE && (max(data[predictors[m]]) >
      1 || min(data[predictors[m]]) < 0)) {
      stop(paste(predictors[m], "must be between 0 and 1 OR sepcified as a non-probability in the probability option",
        sep = " "
      ))
    }
    if (probability[m] == FALSE) {
      model <- NULL
      pred <- NULL
      model <- survival::coxph(survival::Surv(
        data.matrix(data[ttoutcome]),
        data.matrix(data[outcome])
      ) ~ data.matrix(data[predictors[m]]))
      surv.data <- data.frame(0)
      pred <- data.frame(1 - c(summary(survival::survfit(model,
        newdata = surv.data
      ), time = timepoint)$surv))
      names(pred) <- predictors[m]
      data <- cbind(
        data[names(data) != predictors[m]],
        pred
      )
      print(paste(predictors[m], "converted to a probability with Cox regression. Due to linearity and proportional hazards assumption, miscalibration may occur.",
        sep = " "
      ))
    }
  }
  N <- dim(data)[1]
  if (cmprsk == FALSE) {
    km.cuminc <- survival::survfit(survival::Surv(
      data.matrix(data[ttoutcome]), # fixed missing survival::
      data.matrix(data[outcome])
    ) ~ 1)
    pd <- 1 - summary(km.cuminc, times = timepoint)$surv
  } else {
    stop("not supported")
  }
  nb <- data.frame(seq(from = xstart, to = xstop, by = xby))
  names(nb) <- "threshold"
  interv <- nb
  error <- NULL
  nb["all"] <- pd - (1 - pd) * nb$threshold / (1 - nb$threshold)
  nb["none"] <- 0
  for (m in 1:pred.n) {
    nb[predictors[m]] <- NA
    for (t in 1:length(nb$threshold)) {
      px <- sum(data[predictors[m]] > nb$threshold[t]) / N
      if (px == 0) {
        error <- rbind(error, paste(predictors[m], ": No observations with risk greater than ",
          nb$threshold[t] * 100, "%",
          sep = ""
        ))
        break
      } else {
        if (cmprsk == FALSE) {
          km.cuminc <- survival::survfit(survival::Surv(data.matrix(data[data[predictors[m]] >
            nb$threshold[t], ttoutcome]), data.matrix(data[data[predictors[m]] >
            nb$threshold[t], outcome])) ~ 1)
          pdgivenx <- (1 - summary(km.cuminc, times = timepoint)$surv)
          if (length(pdgivenx) == 0) {
            error <- rbind(error, paste(predictors[m],
              ": No observations with risk greater than ",
              nb$threshold[t] * 100, "% that have followup through the timepoint selected",
              sep = ""
            ))
            break
          }
        } else {
          stop("not supported")
        }
      }
      nb[t, predictors[m]] <- pdgivenx * px - (1 - pdgivenx) *
        px * nb$threshold[t] / (1 - nb$threshold[t]) -
        harm[m]
    }
    interv[predictors[m]] <- (nb[predictors[m]] - nb["all"]) *
      interventionper / (interv$threshold / (1 - interv$threshold))
  }
  if (length(error) > 0) {
    print(paste(error, ", and therefore net benefit not calculable in this range.",
      sep = ""
    ))
  }
  for (m in 1:pred.n) {
    if (smooth == TRUE) {
      lws <- stats::loess(data.matrix(nb[
        !is.na(nb[[predictors[m]]]),
        predictors[m]
      ]) ~ data.matrix(nb[
        !is.na(nb[[predictors[m]]]),
        "threshold"
      ]), span = loess.span)
      nb[!is.na(nb[[predictors[m]]]), paste(predictors[m],
        "_sm",
        sep = ""
      )] <- lws$fitted
      lws <- stats::loess(data.matrix(interv[
        !is.na(nb[[predictors[m]]]),
        predictors[m]
      ]) ~ data.matrix(interv[
        !is.na(nb[[predictors[m]]]),
        "threshold"
      ]), span = loess.span)
      interv[!is.na(nb[[predictors[m]]]), paste(predictors[m],
        "_sm",
        sep = ""
      )] <- lws$fitted
    }
  }
  if (graph == TRUE) {
    if (intervention == TRUE) {
      legendlabel <- NULL
      legendcolor <- NULL
      legendwidth <- NULL
      legendpattern <- NULL
      ymax <- max(interv[predictors], na.rm = TRUE)
      graphics::plot(
        x = nb$threshold, y = nb$all, type = "n",
        xlim = c(xstart, xstop), ylim = c(ymin, ymax),
        xlab = "Threshold probability", ylab = paste(
          "Net reduction in interventions per",
          interventionper, "patients"
        )
      )
      for (m in 1:pred.n) {
        if (smooth == TRUE) {
          graphics::lines(interv$threshold, data.matrix(interv[paste(predictors[m],
            "_sm",
            sep = ""
          )]),
          col = m,
          lty = 2
          )
        } else {
          graphics::lines(interv$threshold, data.matrix(interv[predictors[m]]),
            col = m, lty = 2
          )
        }
        legendlabel <- c(legendlabel, predictors[m])
        legendcolor <- c(legendcolor, m)
        legendwidth <- c(legendwidth, 1)
        legendpattern <- c(legendpattern, 2)
      }
    } else {
      legendlabel <- c("None", "All")
      legendcolor <- c(17, 8)
      legendwidth <- c(2, 2)
      legendpattern <- c(1, 1)
      ymax <- max(nb[names(nb) != "threshold"], na.rm = TRUE)
      graphics::plot(
        x = nb$threshold, y = nb$all, type = "l",
        col = 8, lwd = 2, xlim = c(xstart, xstop), ylim = c(
          ymin,
          ymax
        ), xlab = "Threshold probability",
        ylab = "Net benefit"
      )
      graphics::lines(x = nb$threshold, y = nb$none, lwd = 2)
      for (m in 1:pred.n) {
        if (smooth == TRUE) {
          graphics::lines(nb$threshold, data.matrix(nb[paste(predictors[m],
            "_sm",
            sep = ""
          )]),
          col = m,
          lty = 2
          )
        } else {
          graphics::lines(nb$threshold, data.matrix(nb[predictors[m]]),
            col = m, lty = 2
          )
        }
        legendlabel <- c(legendlabel, predictors[m])
        legendcolor <- c(legendcolor, m)
        legendwidth <- c(legendwidth, 1)
        legendpattern <- c(legendpattern, 2)
      }
    }
    graphics::legend("topright", legendlabel,
      cex = 0.8,
      col = legendcolor, lwd = legendwidth, lty = legendpattern
    )
  }
  results <- list()
  results$N <- N
  results$predictors <- data.frame(cbind(predictors, harm, probability))
  names(results$predictors) <- c(
    "predictor", "harm.applied",
    "probability"
  )
  results$interventions.avoided.per <- interventionper
  results$net.benefit <- nb
  results$interventions.avoided <- interv
  return(results)
}


checkToByTwoTableInputs <- function(TP, FP, FN, TN) {
  # check classes
  if (!inherits(x = TP, what = c("integer", "numeric"))) {
    stop("Incorrect TP class")
  }
  if (!inherits(x = FP, what = c("integer", "numeric"))) {
    stop("Incorrect FP class")
  }
  if (!inherits(x = TN, what = c("integer", "numeric"))) {
    stop("Incorrect TN class")
  }
  if (!inherits(x = FN, what = c("integer", "numeric"))) {
    stop("Incorrect FN class")
  }

  # check positive values
  if (sum(TP < 0) > 0) {
    stop("TP < 0")
  }
  if (sum(FP < 0) > 0) {
    stop("FP < 0")
  }
  if (sum(TN < 0) > 0) {
    stop("TN < 0")
  }
  if (sum(FN < 0) > 0) {
    stop("FN < 0")
  }

  return(invisible(TRUE))
}
# making all this single for easy unit testing
#' Calculate the f1Score
#'
#' @details
#' Calculate the f1Score
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' f1Score value
#'
#' @keywords internal
#' @noRd
f1Score <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(2 * (TP / (TP + FP)) * (TP / (TP + FN)) / ((TP / (TP + FP)) + (TP / (TP + FN))))
}
#' Calculate the accuracy
#'
#' @details
#' Calculate the accuracy
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' accuracy value
#'
#' @keywords internal
#' @noRd
accuracy <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return((TP + TN) / (TP + TN + FP + FN))
}

#' Calculate the sensitivity
#'
#' @details
#' Calculate the sensitivity
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' sensitivity value
#'
#' @keywords internal
#' @noRd
sensitivity <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(TP / (TP + FN))
}

#' Calculate the falseNegativeRate
#'
#' @details
#' Calculate the falseNegativeRate
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' falseNegativeRate  value
#' @keywords internal
#' @noRd
falseNegativeRate <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(FN / (TP + FN))
}

#' Calculate the falsePositiveRate
#'
#' @details
#' Calculate the falsePositiveRate
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' falsePositiveRate  value
#' @keywords internal
#' @noRd
falsePositiveRate <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(FP / (FP + TN))
}

#' Calculate the specificity
#'
#' @details
#' Calculate the specificity
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' specificity value
#' @keywords internal
#' @noRd
specificity <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(TN / (FP + TN))
}

#' Calculate the positivePredictiveValue
#'
#' @details
#' Calculate the positivePredictiveValue
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' positivePredictiveValue value
#' @keywords internal
#' @noRd
positivePredictiveValue <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(TP / (TP + FP))
}

#' Calculate the falseDiscoveryRate
#'
#' @details
#' Calculate the falseDiscoveryRate
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' falseDiscoveryRate value
#' @keywords internal
#' @noRd
falseDiscoveryRate <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(FP / (TP + FP))
}

#' Calculate the negativePredictiveValue
#'
#' @details
#' Calculate the negativePredictiveValue
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' negativePredictiveValue value
#' @keywords internal
#' @noRd
negativePredictiveValue <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(TN / (FN + TN))
}

#' Calculate the falseOmissionRate
#'
#' @details
#' Calculate the falseOmissionRate
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' falseOmissionRate value
#' @keywords internal
#' @noRd
falseOmissionRate <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(FN / (FN + TN))
}

#' Calculate the positiveLikelihoodRatio
#'
#' @details
#' Calculate the positiveLikelihoodRatio
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' positiveLikelihoodRatio value
#' @keywords internal
#' @noRd
positiveLikelihoodRatio <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return((TP / (TP + FN)) / (FP / (FP + TN)))
}

#' Calculate the negativeLikelihoodRatio
#'
#' @details
#' Calculate the negativeLikelihoodRatio
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' negativeLikelihoodRatio value
#' @keywords internal
#' @noRd
negativeLikelihoodRatio <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return((FN / (TP + FN)) / (TN / (FP + TN)))
}


#' Calculate the diagnostic odds ratio
#'
#' @details
#' Calculate the diagnostic odds ratio
#'
#' @param TP                Number of true positives
#' @param TN                Number of true negatives
#' @param FN                Number of false negatives
#' @param FP                Number of false positives
#'
#' @return
#' diagnosticOddsRatio value
#' @keywords internal
#' @noRd
diagnosticOddsRatio <- function(TP, TN, FN, FP) {
  checkToByTwoTableInputs(
    TP = TP,
    FP = FP,
    FN = FN,
    TN = TN
  )

  return(((TP / (TP + FN)) / (FP / (FP + TN))) / ((FN / (TP + FN)) / (TN / (FP + TN))))
}

Try the PatientLevelPrediction package in your browser

Any scripts or data that you put into this service are public.

PatientLevelPrediction documentation built on April 3, 2025, 9:58 p.m.