Nothing
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
test_that("savePlpDataError", {
expect_error(savePlpData())
expect_error(savePlpData(plpData = 1))
expect_error(savePlpData(plpData = 1, file = "testing"))
})
if (internet && rlang::is_installed("Eunomia")) {
oldCohorts <- plpData$cohorts
oldOutcomes <- plpData$outcomes
oldCovariates <- as.data.frame(plpData$covariateData$covariates)
oldCovariateRef <- as.data.frame(plpData$covariateData$covariateRef)
}
test_that("savePlpData", {
skip_if_not_installed("Eunomia")
skip_if_offline()
savePlpData(
plpData = plpData,
file = file.path(saveLoc, "saveDataTest"), overwrite = TRUE
)
testExist <- dir.exists(file.path(saveLoc, "saveDataTest"))
expect_equal(testExist, TRUE)
})
test_that("loadPlpDataError", {
expect_error(loadPlpData(file = "madeup/dffdf/testing"))
})
test_that("loadPlpData", {
skip_if_not_installed("Eunomia")
skip_if_offline()
loadedData <- loadPlpData(file = file.path(saveLoc, "saveDataTest"))
expect_identical(loadedData$cohorts, oldCohorts)
expect_identical(loadedData$outcomes, oldOutcomes)
expect_equal(
as.data.frame(loadedData$covariateData$covariates),
oldCovariates
)
expect_equal(
as.data.frame(loadedData$covariateData$covariateRef),
oldCovariateRef
)
})
# add tests using simualted data...
test_that("print.plpData", {
expect_equal(print.plpData(NULL), NULL)
})
test_that("summary.plpData", {
expect_error(summary.plpData(NULL))
})
test_that("print.summary.plpData", {
expect_error(print.summary.plpData(NULL))
})
test_that("savePlpModelError", {
expect_error(savePlpModel(dirPath = NULL))
expect_error(savePlpModel(plpModel = NULL))
expect_error(savePlpModel(plpModel = NULL, dirPath = NULL))
})
test_that("loadPlpModelError", {
expect_error(loadPlpModel(dirPath = NULL))
expect_error(loadPlpModel(dirPath = "madeup.txt"))
})
test_that("move model files when saveType is file", {
skip_if_not_installed("Eunomia")
skip_if_offline()
# make an sklearn model to test file transport
dir.create(file.path(saveLoc, "testMoveStart"))
write.csv(data.frame(a = 1, b = 2), file = file.path(saveLoc, "testMoveStart", "file.csv"), row.names = FALSE)
plpModelTemp <- plpResult$model
plpModelTemp$model <- file.path(saveLoc, "testMoveStart")
attr(plpModelTemp, "saveType") <- "file"
savePlpModel(plpModel = plpModelTemp, dirPath = file.path(saveLoc, "testMoveEnd"))
expect_equal(dir(file.path(saveLoc, "testMoveStart")), dir(file.path(saveLoc, "testMoveEnd", "model")))
})
test_that("savePrediction", {
predLoc <- savePrediction(
prediction = data.frame(rowId = 1:10, value = 1:10),
dirPath = saveLoc, fileName = "pred.json"
)
expect_equal(file.exists(predLoc), TRUE)
})
test_that("loadPrediction", {
pred <- loadPrediction(file.path(saveLoc, "pred.json"))
expect_identical(data.frame(rowId = 1:10, value = 1:10), pred)
})
test_that("savePlpResultError", {
expect_error(savePlpResult(dirPath = NULL))
expect_error(savePlpResult(result = NULL))
})
test_that("savePlpResult", {
emptyModel <- list()
attr(emptyModel, "predictionFunction") <- "none"
attr(emptyModel, "saveType") <- "RtoJson"
class(emptyModel) <- "plpModel"
emptyResult <- list(
model = emptyModel,
prediction = data.frame(rowId = 1:5, value = 1:5),
performanceEvaluation = data.frame(),
covariateSummary = NULL,
executionSettings = NULL
)
class(emptyResult) <- "runPlp"
savePlpResult(result = emptyResult, dirPath = file.path(saveLoc, "plpResultTest"))
expect_equal(dir.exists(file.path(saveLoc, "plpResultTest")), TRUE)
expect_equal(dir(file.path(saveLoc, "plpResultTest")), c("model", "runPlp.rds"))
})
test_that("loadPlpResultError", {
expect_error(loadPlpResult(dirPath = NULL))
expect_error(loadPlpResult(dirPath = "madeup/dfdfd/j"))
write.csv(c(0), file.path(saveLoc, "file2.csv"))
expect_error(loadPlpResult(dirPath = file.path(saveLoc, "file1.csv")))
})
test_that("loadPlpResult", {
emptyModel <- list()
attr(emptyModel, "predictionFunction") <- "none"
attr(emptyModel, "saveType") <- "RtoJson"
class(emptyModel) <- "plpModel"
emptyResult <- list(
model = emptyModel,
prediction = data.frame(rowId = 1:5, value = 1:5),
performanceEvaluation = data.frame(),
covariateSummary = NULL,
executionSettings = NULL
)
class(emptyResult) <- "runPlp"
plpResultLoaded <- loadPlpResult(file.path(saveLoc, "plpResultTest"))
expect_identical(plpResultLoaded$covariateSummary, emptyResult$covariateSummary)
expect_identical(plpResultLoaded$executionSummary, emptyResult$executionSummary)
expect_identical(plpResultLoaded$performanceEvaluation, emptyResult$performanceEvaluation)
expect_identical(plpResultLoaded$prediction, emptyResult$prediction)
})
test_that("savePlpShareable works", {
skip_if_not_installed("Eunomia")
skip_if_offline()
# check it works
savePlpShareable(plpResult, file.path(saveLoc, "plpFriendly"), minCellCount = 0)
shareableLoad <- loadPlpShareable(file.path(saveLoc, "plpFriendly"))
# check covariateSummary
expect_equal(nrow(shareableLoad$covariateSummary), nrow(plpResult$covariateSummary))
# check performanceEvaluation
expect_equal(
dim(shareableLoad$performanceEvaluation$evaluationStatistics),
dim(plpResult$performanceEvaluation$evaluationStatistics)
)
expect_equal(
dim(shareableLoad$performanceEvaluation$thresholdSummary),
dim(plpResult$performanceEvaluation$thresholdSummary)
)
expect_equal(
dim(shareableLoad$performanceEvaluation$demographicSummary),
dim(plpResult$performanceEvaluation$demographicSummary)
)
expect_equal(
dim(shareableLoad$performanceEvaluation$calibrationSummary),
dim(plpResult$performanceEvaluation$calibrationSummary)
)
expect_equal(
dim(shareableLoad$performanceEvaluation$predictionDistribution),
dim(plpResult$performanceEvaluation$predictionDistribution)
)
})
# Note: saving from database to csv is in the database upload test file
test_that("applyMinCellCount works", {
result <- data.frame(
performance_id = 1:2,
covariate_id = 1:2,
covariate_name = paste0("name", 1:2),
concept_id = 1:2,
covariate_value = runif(2),
covariate_count = c(100, 50),
covariate_mean = runif(2),
covariate_st_dev = runif(2),
with_no_outcome_covariate_count = c(10, 5),
with_no_outcome_covariate_mean = runif(2),
with_no_outcome_covariate_st_dev = runif(2),
with_outcome_covariate_count = c(90, 45),
with_outcome_covariate_mean = runif(2),
with_outcome_covariate_st_dev = runif(2),
standardized_mean_diff = runif(2)
)
minCellResult <- applyMinCellCount(
tableName = "covariate_summary",
sensitiveColumns = getPlpSensitiveColumns(),
result = result,
minCellCount = 5
)
# check nothing removed
expect_equal(2, sum(minCellResult$covariate_count != -1))
expect_equal(2, sum(minCellResult$with_no_outcome_covariate_count != -1))
expect_equal(2, sum(minCellResult$with_outcome_covariate_count != -1))
# now check values are removed
minCellResult <- applyMinCellCount(
tableName = "covariate_summary",
sensitiveColumns = getPlpSensitiveColumns(),
result = result,
minCellCount = 10
)
expect_equal(0, sum(minCellResult$covariate_count == -1))
expect_equal(minCellResult$with_no_outcome_covariate_count[2], -1)
expect_equal(1, sum(minCellResult$with_no_outcome_covariate_count == -1))
expect_equal(1, sum(minCellResult$with_outcome_covariate_count == -1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.