Nothing
#' Burke ratio of the return distribution
#'
#' To calculate Burke ratio we take the difference between the portfolio
#' return and the risk free rate and we divide it by the square root of the
#' sum of the square of the drawdowns. To calculate the modified Burke ratio
#' we just multiply the Burke ratio by the square root of the number of datas.
#'
#' \deqn{Burke Ratio = \frac{r_P - r_F}{\sqrt{\sum^{d}_{t=1}{D_t}^2}}}{Burke Ratio = (Rp - Rf) / (sqrt(sum(t=1..n)(Dt^2)))}
#'
#' \deqn{Modified Burke Ratio = \frac{r_P - r_F}{\sqrt{\sum^{d}_{t=1}\frac{{D_t}^2}{n}}}}{Modified Burke Ratio = (Rp - Rf) / (sqrt(sum(t=1..n)(Dt^2 / n)))}
#'
#' where \eqn{n} is the number of observations of the entire series, \eqn{d} is number of drawdowns, \eqn{r_P} is the portfolio return, \eqn{r_F} is the risk free rate and \eqn{D_t} the \eqn{t^{th}} drawdown.
#'
#' @aliases BurkeRatio
#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
#' asset returns
#' @param Rf the risk free rate
#' @param modified a boolean to decide which ratio to calculate between Burke ratio and modified Burke ratio.
#' @param \dots any other passthru parameters
#' @author Matthieu Lestel
#' @references Carl Bacon, \emph{Practical portfolio performance measurement
#' and attribution}, second edition 2008 p.90-91
#'
###keywords ts multivariate distribution models
#' @examples
#' data(portfolio_bacon)
#' print(BurkeRatio(portfolio_bacon[,1])) #expected 0.74
#' print(BurkeRatio(portfolio_bacon[,1], modified = TRUE)) #expected 3.65
#'
#' data(managers)
#' print(BurkeRatio(managers['1996']))
#' print(BurkeRatio(managers['1996',1]))
#' print(BurkeRatio(managers['1996'], modified = TRUE))
#' print(BurkeRatio(managers['1996',1], modified = TRUE))
#'
#' @export
BurkeRatio <- function (R, Rf = 0, modified = FALSE, ...)
{
drawdown = c()
R0 <- R
R = checkData(R, method="matrix")
if (ncol(R)==1 || is.null(R) || is.vector(R)) {
calcul = FALSE
n = length(R)
number_drawdown = 0
in_drawdown = FALSE
peak = 1
for (i in (1:length(R))) {
if (!is.na(R[i])) {
calcul = TRUE
}
}
if(!calcul) {
result = NA
}
else
{
period = Frequency(R)
R = na.omit(R)
for (i in (2:length(R))) {
if (R[i]<0)
{
if (!in_drawdown)
{
peak = i-1
number_drawdown = number_drawdown + 1
in_drawdown = TRUE
}
}
else
{
if (in_drawdown)
{
temp = 1
boundary1 = peak+1
boundary2 = i-1
for(j in (boundary1:boundary2)) {
temp = temp*(1+R[j]*0.01)
}
drawdown = c(drawdown, (temp - 1) * 100)
in_drawdown = FALSE
}
}
}
if (in_drawdown)
{
temp = 1
boundary1 = peak+1
boundary2 = i
for(j in (boundary1:boundary2)) {
temp = temp*(1+R[j]*0.01)
}
drawdown = c(drawdown, (temp - 1) * 100)
in_drawdown = FALSE
}
D = Drawdowns(R)
Rp = (prod(1 + R))^(period / length(R)) - 1
result = (Rp - Rf)/sqrt(sum(drawdown^2))
if(modified)
{
result = result * sqrt(n)
}
}
return(result)
}
else {
R = checkData(R)
result = apply(R, MARGIN = 2, BurkeRatio, Rf = Rf, modified = modified, ...)
result<-t(result)
colnames(result) = colnames(R)
if (modified)
{
rownames(result) = paste("Modified Burke ratio (Risk free = ",Rf,")", sep="")
}
else
{
rownames(result) = paste("Burke ratio (Risk free = ",Rf,")", sep="")
}
return(result)
}
}
###############################################################################
# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
#
# Copyright (c) 2004-2020 Peter Carl and Brian G. Peterson
#
# This R package is distributed under the terms of the GNU Public License (GPL)
# for full details see the file COPYING
#
# $Id$
#
###############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.