Nothing
avg.variog <-
function(day,coord1,coord2,id,variable,cut.points=NULL,max.dist=NULL,nbins=300){
# default values
if(missing(cut.points))
cut.points <- NULL
if(missing(max.dist))
max.dist <- NULL
if(missing(nbins))
nbins <- NULL
#INPUT CHECK
#Here we check if the input is right.
l.day <- length(day)
l.var <- length(variable)
l.id <- length(id)
l.coord1 <- length(coord1)
l.coord2 <- length(coord2)
if(sum((c(l.day,l.var,l.id,l.coord1,l.coord2)/l.day)==rep(1,5))!=5){
stop("Error in the dimension of the data!")
}
if(sum(is.numeric(variable)==rep("TRUE",l.var))<l.var){
stop("variable should be a numeric vector")
}
if(sum(ceiling(day)==day)<l.day){
stop("day should be a vector containing integer")
}
if(sum(is.numeric(coord1)==rep("TRUE",l.coord1)) < l.coord1 | sum(is.numeric(coord2)==rep("TRUE",l.coord2)) < l.coord2){
stop("coord1 and coord2 should be numeric vectors")
}
## here we check the cutpoints vector
l.cuts <- length(cut.points)
if(l.cuts==1){
stop("cut.points should be a numeric vector")
}
if(l.cuts>=2 & (sum(is.numeric(cut.points)==rep("TRUE",l.cuts))<l.cuts)){
stop("cut.points should be a numeric vector")
}
if(l.cuts>=2 & (sum(is.numeric(cut.points)==rep("TRUE",l.cuts))==l.cuts)){
if(sum(order(cut.points)==seq(1:l.cuts)) < l.cuts){
stop("Cut points should be in increasing order")
}
if(sum(cut.points >= 0) < l.cuts){
stop("Cut points should be non-negative numbers")
}
if(length(cut.points)!=length(unique(cut.points))){
stop("The vector with cut points should not contain repeated entries")
}
}
## check on the max.dist
l.mdist <- length(max.dist)
if(l.mdist > 1){
stop("max.dist is a numeric field, not a vector")
}
if(l.mdist==1){
if(is.numeric(max.dist)==FALSE){
stop("max.dist is a numeric field")
}
if(max.dist < 0){
stop("max.dist should be a positive number")
}
}
## check on the number of bins
l.nbins <- length(nbins)
if(l.nbins==0 & l.cuts==0){
nbins <- 300
}
if(l.nbins==1 & l.cuts >=2){
nbins=NULL
}
l.nbins <- length(nbins)
if(l.nbins >1){
stop("nbins should be an integer: not a vector")
}
if(l.nbins==1){
if(ceiling(nbins)!=nbins){
stop("Invalid input: the number of bins should be a positive
integer")
}
if(ceiling(nbins)==nbins & nbins < 0){
stop("Invalid input: the number of bins should be a positive
integer")
}
}
# ESTIMATION of THE EMPIRICAL VARIOGRAM
# here we order the data in ascending date order
day.o <- order(day)
coord1 <- coord1[day.o]
coord2 <- coord2[day.o]
variable <- variable[day.o]
marginal.var <- var(variable)
id <- id[day.o]
# Here we determine the vector of cutpoints.
# If the vector with the cutpoints is not specified, we determine the cutpoints by looking at the day with the median number
# of observations, we calculate the cutpoints so that the number
# of bins is equal to the one specified and each bin contains approx the same number of pairs. If the vector with the
# cutpoints is specified, then we just use that vector of cutpoints.
if(length(cut.points)!=0 & length(max.dist)!=0){
cut.points <- cut.points[cut.points <= max.dist]
}
if(length(cut.points)==0){
# all this part is to determine the day with the median number of observations
variable.day <- table(day)
variable.day.vec <- matrix(variable.day,nrow=length(unique(day)),ncol=1)
variable.median <- round(apply(variable.day.vec,2,median),0)
diff.median <- abs(variable.day-variable.median)
unique.day <- unique(day)
day.index <- min(unique.day[diff.median==min(diff.median)])
# this part is to determine the distance among stations that have been recorded in the
# day with the median number of observations and to determine the cutpoints.
variable.day.index <- variable[day==day.index]
id.day.index <- id[day==day.index]
coord1.day.index <- coord1[day==day.index]
coord2.day.index <- coord2[day==day.index]
dist.day.index <- calc.dist(coord1.day.index,coord2.day.index,id.day.index)
dist.day.index <- dist.day.index[lower.tri(dist.day.index)]
dist.day.index <- dist.day.index[dist.day.index > 0]
ord.dist.day <- sort(dist.day.index)
# this is in case we want to consider only those pairs of stations where the distance
# is smaller than the maximum distance allowed among locations.
if(length(max.dist)!= 0){
ord.dist.day <- ord.dist.day[ord.dist.day < max.dist]
}
if(length(max.dist)==0){
max.dist <- quantile(ord.dist.day,.9)
ord.dist.day <- ord.dist.day[ord.dist.day < max.dist]
}
l.dist.day <- length(ord.dist.day)
l.bins <- floor(l.dist.day/nbins)
for(i in 1:(nbins-1)){
cut.points[i] <- ord.dist.day[i*l.bins]
}
}
## Here is where the actual function starts
unique.day <- unique(day)
l.day <- length(unique.day)
n.stations <- length(unique(id))
n.cuts <- length(cut.points)
W <- rep(0,(n.cuts-1))
W.obs <- rep(0,(n.cuts-1))
for(i in 1:l.day){
distance.day <- NULL
difference.day <- NULL
new.dist.day <- NULL
s.new.dist.day <- NULL
o.new.dist.day <- NULL
new.diff.day <- NULL
s.new.diff.day <- NULL
variable.day <- NULL
id.day <- NULL
coord1.day <- NULL
coord2.day <- NULL
variable.day <- variable[day==unique.day[i]]
id.day <- id[day==unique.day[i]]
coord1.day <- coord1[day==unique.day[i]]
coord2.day <- coord2[day==unique.day[i]]
distance.day <- calc.dist(coord1.day,coord2.day,id.day)
new.dist.day <- distance.day[lower.tri(distance.day)]
s.new.dist.day <- sort(new.dist.day)
o.new.dist.day <- order(new.dist.day)
difference.day <- calc.difference(variable.day)
new.diff.day <- difference.day[lower.tri(difference.day)]
s.new.diff.day <- new.diff.day[o.new.dist.day]
W.new <- rep(0,(n.cuts-1))
W.obs.new <- rep(0,(n.cuts-1))
for(s in 1:(n.cuts-1)){
low.bound <- cut.points[s]
upp.bound <- cut.points[s+1]
v.dist <- NULL
v.dist1 <- NULL
v.diff1 <- NULL
index.v.dist <- NULL
index.v.dist1 <- NULL
if(s < (n.cuts-1)){
v.dist <- s.new.dist.day[s.new.dist.day >= low.bound & s.new.dist.day < upp.bound]
index.v.dist <- seq(1:length(s.new.dist.day))[s.new.dist.day >= low.bound & s.new.dist.day < upp.bound]
v.dist1 <- v.dist[v.dist!=0]
index.v.dist1 <- index.v.dist[v.dist!=0]
if(length(v.dist1) >=1){
v.diff1 <- s.new.diff.day[index.v.dist1]
W.new[s] <- sum(v.diff1)
W.obs.new[s] <- length(v.dist1)}
if(length(v.dist1) ==0){
W.new[s] <- 0
W.obs.new[s] <- 0}
}
if(s==(n.cuts-1)){
v.dist <- s.new.dist.day[s.new.dist.day >= low.bound & s.new.dist.day <= upp.bound]
index.v.dist <- seq(1:length(s.new.dist.day))[s.new.dist.day >= low.bound & s.new.dist.day <= upp.bound]
v.dist1 <- v.dist[v.dist!=0]
index.v.dist1 <- index.v.dist[v.dist!=0]
if(length(v.dist1) >=1){
v.diff1 <- s.new.diff.day[index.v.dist1]
W.new[s] <- sum(v.diff1)
W.obs.new[s] <- length(v.dist1)}
if(length(v.dist1) ==0){
W.new[s] <- 0
W.obs.new[s] <- 0}
}
}
W <- W+W.new
W.obs <- W.obs + W.obs.new
}
avg.variog <- round(W/(2*W.obs),2)
n.h <- W.obs
x.vec <- NULL
for(i in 1:(n.cuts-1)){
x.vec[i] <- (cut.points[i]+cut.points[i+1])/2
}
fin.avg.variog <- c(0,avg.variog)
fin.x.vec <- c(0,x.vec)
fin.n.h <- c(n.stations,n.h)
B <- list(mar.var=round(marginal.var,3),bin.midpoints=fin.x.vec,number.pairs=fin.n.h,empir.variog=fin.avg.variog)
return(B)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.