LogLikGTEF: Log-likelihood function for the generalized tick-exponential...

Description Usage Arguments Value References Examples

View source: R/GETF.R

Description

Log-Likelihood function \ell_n(η,φ,α,p)=\ln[L_n(η,φ,α,p)] in the generalized tick-exponential family of densities discussed in Gijbels et al. (2019b).

Usage

1
LogLikGTEF(y, eta, phi, alpha, p, g)

Arguments

y

This is a vector of quantiles.

eta

This is the location parameter η.

phi

This is the scale parameter φ.

alpha

This is the index parameter α.

p

This is the shape parameter, which must be positive.

g

This is the "link" function. The function g is to be differentiated. Therefore, g must be written as a function. For example, g<-function(y){log(y)} for log link function.

Value

LogLikGAD provides the realized value of the Log-likelihood function of the generalized quantile-based asymmetric family of distributions.

References

Gijbels, I., Karim, R. and Verhasselt, A. (2019b). Quantile estimation in a generalized asymmetric distributional setting. To appear in Springer Proceedings in Mathematics & Statistics, Proceedings of ‘SMSA 2019’, the 14th Workshop on Stochastic Models, Statistics and their Application, Dresden, Germany, in March 6–8, 2019. Editors: Ansgar Steland, Ewaryst Rafajlowicz, Ostap Okhrin.

Examples

1
2
3
4
5
6
# Examples
y<-rnorm(100)
g_id<-function(y){y}
g_log<-function(y){log(y)}
LogLikGTEF(y,eta=0,phi=1,alpha=0.5,p=2,g=g_id) # For identity-link
LogLikGTEF(rexp(100,0.1),eta=10,phi=1,alpha=0.5,p=2,g=g_log) # For log-link

QBAsyDist documentation built on Sept. 4, 2019, 1:05 a.m.