Description Usage Arguments Value References Examples
Density, cumulative distribution function, quantile function and random sample generation from the generalized tick-exponential family (GTEF) of densities discusse in Gijbels et al. (2019b).
1 2 3 4 5 6 7 |
y, q |
These are each a vector of quantiles. |
eta |
This is the location parameter η. |
phi |
This is the scale parameter φ. |
alpha |
This is the index parameter α. |
p |
This is the shape parameter, which must be positive. |
g |
This is the "link" function. The function g is to be differentiated. Therefore, g must be written as a function. For example, g<-function(y){log(y)} for log link function. |
beta |
This is a vector of probabilities. |
lower |
This is the lower limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default -Inf. |
upper |
This is the upper limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default Inf. |
n |
This is the number of observations, which must be a positive integer that has length 1. |
dGTEF
provides the density, pGTEF
provides the cumulative distribution function, qGTEF
provides the quantile function, and rGTEF
generates a random sample from the generalized tick-exponential family of densities.
The length of the result is determined by n for rGTEF
, and is the maximum of the lengths of the numerical arguments for the other functions.
Gijbels, I., Karim, R. and Verhasselt, A. (2019b). Quantile estimation in a generalized asymmetric distributional setting. To appear in Springer Proceedings in Mathematics & Statistics, Proceedings of ‘SMSA 2019’, the 14th Workshop on Stochastic Models, Statistics and their Application, Dresden, Germany, in March 6–8, 2019. Editors: Ansgar Steland, Ewaryst Rafajlowicz, Ostap Okhrin.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # For identiy link function
y=rnorm(100)
g_id<-function(y){y}
dGTEF(y,eta=0,phi=1,alpha=0.5,p=2,g=g_id)
# cumulative distribution function
pGTEF(q=y,eta=10,phi=1,alpha=0.5,p=2,g=g_id)
# Quantile function
beta=c(0.25,0.5,0.75)
qGTEF(beta=beta,eta=10,phi=1,alpha=0.5,p=2,g=g_id)
# random sample generation
rGTEF(n=100,eta=10,phi=1,alpha=.5,p=2,g=g_id,lower = -Inf, upper = Inf)
# For log link function
y=rexp(100)
g_log<-function(y){log(y)}
dGTEF(y,eta=10,phi=1,alpha=0.5,p=2,g=g_log)
# cumulative distribution function
pGTEF(q=y,eta=10,phi=1,alpha=0.5,p=2,g=g_log)
# Quantile function
g_log<-function(y){log(y)}
#' beta=c(0.25,0.5,0.75)
qGTEF(beta=beta,eta=10,phi=1,alpha=0.5,p=2,g=g_log,lower = 0, upper = Inf)
# random sample generation
rGTEF(n=100,eta=10,phi=1,alpha=.5,p=2,g=g_log,lower = 0, upper = Inf)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.