GTEF: Generalized tick-exponential family

Description Usage Arguments Value References Examples

Description

Density, cumulative distribution function, quantile function and random sample generation from the generalized tick-exponential family (GTEF) of densities discusse in Gijbels et al. (2019b).

Usage

1
2
3
4
5
6
7
dGTEF(y, eta, phi, alpha, p, g)

pGTEF(q, eta, phi, alpha, p, g)

qGTEF(beta, eta, phi, alpha, p, g, lower = -Inf, upper = Inf)

rGTEF(n, eta, phi, alpha, p, g, lower = -Inf, upper = Inf)

Arguments

y, q

These are each a vector of quantiles.

eta

This is the location parameter η.

phi

This is the scale parameter φ.

alpha

This is the index parameter α.

p

This is the shape parameter, which must be positive.

g

This is the "link" function. The function g is to be differentiated. Therefore, g must be written as a function. For example, g<-function(y){log(y)} for log link function.

beta

This is a vector of probabilities.

lower

This is the lower limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default -Inf.

upper

This is the upper limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default Inf.

n

This is the number of observations, which must be a positive integer that has length 1.

Value

dGTEF provides the density, pGTEF provides the cumulative distribution function, qGTEF provides the quantile function, and rGTEF generates a random sample from the generalized tick-exponential family of densities. The length of the result is determined by n for rGTEF, and is the maximum of the lengths of the numerical arguments for the other functions.

References

Gijbels, I., Karim, R. and Verhasselt, A. (2019b). Quantile estimation in a generalized asymmetric distributional setting. To appear in Springer Proceedings in Mathematics & Statistics, Proceedings of ‘SMSA 2019’, the 14th Workshop on Stochastic Models, Statistics and their Application, Dresden, Germany, in March 6–8, 2019. Editors: Ansgar Steland, Ewaryst Rafajlowicz, Ostap Okhrin.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# For identiy link function
y=rnorm(100)
g_id<-function(y){y}
dGTEF(y,eta=0,phi=1,alpha=0.5,p=2,g=g_id)

# cumulative distribution function
pGTEF(q=y,eta=10,phi=1,alpha=0.5,p=2,g=g_id)

# Quantile function
beta=c(0.25,0.5,0.75)
qGTEF(beta=beta,eta=10,phi=1,alpha=0.5,p=2,g=g_id)

# random sample generation
rGTEF(n=100,eta=10,phi=1,alpha=.5,p=2,g=g_id,lower = -Inf, upper = Inf)

# For log link function
y=rexp(100)
g_log<-function(y){log(y)}
dGTEF(y,eta=10,phi=1,alpha=0.5,p=2,g=g_log)

# cumulative distribution function
pGTEF(q=y,eta=10,phi=1,alpha=0.5,p=2,g=g_log)

# Quantile function
g_log<-function(y){log(y)}
#' beta=c(0.25,0.5,0.75)
qGTEF(beta=beta,eta=10,phi=1,alpha=0.5,p=2,g=g_log,lower = 0, upper = Inf)

# random sample generation
rGTEF(n=100,eta=10,phi=1,alpha=.5,p=2,g=g_log,lower = 0, upper = Inf)

QBAsyDist documentation built on Sept. 4, 2019, 1:05 a.m.

Related to GTEF in QBAsyDist...