Description Usage Arguments Value References Examples
Density, cumulative distribution function, quantile function and random sample generation from the quantile-based asymmetric family of densities defined in Gijbels et al. (2019a).
1 2 3 4 5 6 7 |
y, q |
These are each a vector of quantiles. |
mu |
This is the location parameter μ. |
phi |
This is the scale parameter φ. |
alpha |
This is the index parameter α. |
f |
This is the reference density function f which is a standard version of a unimodal and symmetric around 0 density. |
F |
This is the cumulative distribution function F of a unimodal and symmetric around 0 reference density function f. |
beta |
This is a vector of probabilities. |
QF |
This is the quantile function of the reference density f. |
n |
This is the number of observations, which must be a positive integer that has length 1. |
dQBAD
provides the density, pQBAD
provides the cumulative distribution function, qQBAD
provides the quantile function, and rQBAD
generates a random sample from the quantile-based asymmetric family of distributions.
The length of the result is determined by n for rQBAD
, and is the maximum of the lengths of the numerical arguments for the other functions.
Gijbels, I., Karim, R. and Verhasselt, A. (2019a). On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, https://doi.org/10.1111/insr.12324.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | # Example 1: Let F be a standard normal cumulative distribution function then
f_N<-function(s){dnorm(s, mean = 0,sd = 1)} # density function of N(0,1)
F_N<-function(s){pnorm(s, mean = 0,sd = 1)} # distribution function of N(0,1)
QF_N<-function(beta){qnorm(beta, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)}
rnum<-rnorm(100)
beta=c(0.25,0.50,0.75)
# Density
dQBAD(y=rnum,mu=0,phi=1,alpha=.5,f=f_N)
# Distribution function
pQBAD(q=rnum,mu=0,phi=1,alpha=.5,F=F_N)
# Quantile function
qQBAD(beta=beta,mu=0,phi=1,alpha=.5,F=F_N,QF=QF_N)
qQBAD(beta=beta,mu=0,phi=1,alpha=.5,F=F_N)
# random sample generation
rQBAD(n=100,mu=0,phi=1,alpha=.5,QF=QF_N)
rQBAD(n=100,mu=0,phi=1,alpha=.5,F=F_N)
# Example 2: Let F be a standard Laplace cumulative distribution function then
f_La<-function(s){0.5*exp(-abs(s))} # density function of Laplace(0,1)
F_La<-function(s){0.5+0.5*sign(s)*(1-exp(-abs(s)))} # distribution function of Laplace(0,1)
QF_La<-function(beta){-sign(beta-0.5)*log(1-2*abs(beta-0.5))}
rnum<-rnorm(100)
beta=c(0.25,0.50,0.75)
# Density
dQBAD(y=rnum,mu=0,phi=1,alpha=.5,f=f_La)
# Distribution function
pQBAD(q=rnum,mu=0,phi=1,alpha=.5,F=F_La)
# Quantile function
qQBAD(beta=c(0.25,0.50,0.75),mu=0,phi=1,alpha=.5,F=F_La,QF=QF_La)
qQBAD(beta=c(0.25,0.50,0.75),mu=0,phi=1,alpha=.5,F=F_La)
# random sample generation
rQBAD(n=100,mu=0,phi=1,alpha=.5,QF=QF_La)
rQBAD(n=100,mu=0,phi=1,alpha=.5,F=F_La)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.