Description Usage Arguments Value References Examples
The log-likelihood function \ell_n(μ,φ,α)=\ln[L_n(μ,φ,α)] and parameter estimation of θ=(μ,φ,α) in the three parameter quantile-based asymmetric family of densities by using the maximum likelihood estimation are discussed in Section 3.2 of Gijbels et al. (2019a).
1 |
y |
This is a vector of quantiles. |
f |
This is the reference density function f which is a standard version of a unimodal and symmetric around 0 density. |
alpha |
This is the index parameter α. |
The maximum likehood estimate of paramter θ=(μ,φ,α) of the quantile-based asymmetric family of densities
Gijbels, I., Karim, R. and Verhasselt, A. (2019a). On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, https://doi.org/10.1111/insr.12324.
1 2 3 4 5 6 7 8 9 10 | # Example 1: Let F be a standard normal cumulative distribution function then
f_N<-function(s){dnorm(s, mean = 0,sd = 1)} # density function of N(0,1)
rnum=rnorm(100)
mleQBAD(rnum,f=f_N)
mleQBAD(rnum,f=f_N,alpha=.5)
# Example 2: Let F be a standard Laplace cumulative distribution function then
f_La<-function(s){0.5*exp(-abs(s))} # density function of Laplace(0,1)
mleQBAD(rnum,f=f_La)
mleQBAD(rnum,f=f_La,alpha=.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.