GAD: Generalized quantile-based asymmetric family

Description Usage Arguments References Examples

Description

Density, cumulative distribution function, quantile function and random sample generation from the generalized quantile-based asymmetric family of densities defined in Gijbels et al. (2019b).

Usage

1
2
3
4
5
6
7
8
dGAD(y, eta, phi, alpha, f, g)

pGAD(q, eta, phi, alpha, F, g)

qGAD(beta, eta, phi, alpha, F, g, QF = NULL, lower = -Inf,
  upper = Inf)

rGAD(n, eta, phi, alpha, F, g, lower = -Inf, upper = Inf, QF = NULL)

Arguments

y, q

These are each a vector of quantiles.

eta

This is the location parameter η.

phi

This is the scale parameter φ.

alpha

This is the index parameter α.

f

This is the reference density function f which is a standard version of a unimodal and symmetric around 0 density.

g

This is the "link" function. The function g is to be differentiated. Therefore, g must be written as a function. For example, g<-function(y){log(y)} for log link function.

F

This is the cumulative distribution function F of the unimodal and symmetric around 0 reference density function f.

beta

This is a vector of probabilities.

QF

This is the quantile function of the reference density f.

lower

This is the lower limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default -Inf.

upper

This is the upper limit of the domain (support of the random variable) f_{α}^g(y;η,φ), default Inf.

n

This is the number of observations, which must be a positive integer that has length 1.

References

Gijbels, I., Karim, R. and Verhasselt, A. (2019b). Quantile estimation in a generalized asymmetric distributional setting. To appear in Springer Proceedings in Mathematics & Statistics, Proceedings of ‘SMSA 2019’, the 14th Workshop on Stochastic Models, Statistics and their Application, Dresden, Germany, in March 6–8, 2019. Editors: Ansgar Steland, Ewaryst Rafajlowicz, Ostap Okhrin.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Example 1: Let F be a standard normal cumulative distribution function then
f_N<-function(s){dnorm(s, mean = 0,sd = 1)} # density function of N(0,1)
F_N<-function(s){pnorm(s, mean = 0,sd = 1)} # distribution function of N(0,1)
QF_N<-function(beta){qnorm(beta, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)}

# For identiy link function
g_id<-function(y){y}
# For log-link function
g_log<-function(y){log(y)}

rnum<-rnorm(100)
beta=c(0.25,0.50,0.75)

# Density
dGAD(y=rnorm(100),eta=10,phi=1,alpha=0.5,f=f_N,g=g_id) # For identity link
dGAD(y=rexp(100,0.1),eta=10,phi=1,alpha=0.5,f=f_N,g=g_log) # For log-link

# Distribution function
pGAD(q=rnorm(100),eta=0,phi=1,alpha=.5,F=F_N,g=g_id) # For identity link
pGAD(q=rexp(100,0.1),eta=10,phi=1,alpha=.5,F=F_N,g=g_log) # For log-link

# Quantile function
qGAD(beta=beta,eta=0,phi=1,alpha=0.5,F=F_N,g=g_id) # For identity link
qGAD(beta=beta,eta=10,phi=1,alpha=0.5,F=F_N,g=g_log,lower = 0, upper = Inf)  # For log-link

# random sample generation
rGAD(n=100,eta=0,phi=1,alpha=.5,F=F_N,g=g_id ,lower = -Inf, upper = Inf,QF=NULL) # For identity link
rGAD(n=100,eta=10,phi=1,alpha=.5,F=F_N,g=g_log ,lower =0, upper = Inf,QF=NULL)   # For log-link


# Example 2: Let F be a standard Laplace cumulative distribution function then
f_La<-function(s){0.5*exp(-abs(s))} # density function of Laplace(0,1)
F_La<-function(s){0.5+0.5*sign(s)*(1-exp(-abs(s)))} # distribution function of Laplace(0,1)
QF_La<-function(beta){-sign(beta-0.5)*log(1-2*abs(beta-0.5))}

# For identiy link function
g_log<-function(y){log(y)}
beta=c(0.25,0.50,0.75)

# Density
dGAD(y=rnorm(100),eta=10,phi=1,alpha=0.5,f=f_La,g=g_id) # For identity-link
dGAD(y=rexp(100,0.1),eta=10,phi=1,alpha=0.5,f=f_La,g=g_log) # For log-link

# Distribution function
pGAD(q=rnum,eta=0,phi=1,alpha=.5,F=F_La,g=g_id) # For identity-link
pGAD(q=rexp(100,0.1),eta=10,phi=1,alpha=.5,F=F_La,g=g_log) # For log-link

# Quantile function
qGAD(beta=beta,eta=0,phi=1,alpha=0.5,F=F_La,g=g_id,lower = -Inf, upper = Inf) # For identity link
qGAD(beta=beta,eta=10,phi=1,alpha=0.5,F=F_La,g=g_log,lower = 0, upper = Inf) # For log-link

# random sample generation
rGAD(n=100,eta=0,phi=1,alpha=.5,F=F_La,g=g_id) # For identity link
rGAD(n=100,eta=10,phi=1,alpha=.5,F=F_La,g=g_log ,lower =0, upper = Inf,QF=NULL)   # For log-link

QBAsyDist documentation built on Sept. 4, 2019, 1:05 a.m.

Related to GAD in QBAsyDist...