Description Usage Arguments Value References Examples
Mean, variance, skewness, kurtosis and moments about the location parameter (i.e., αth quantile) of the quantile-based asymmetric family of densities defined in Gijbels et al. (2019a) useful for quantile regression with location parameter equal to μ, scale parameter φ and index parameter α.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
f |
This is the reference density function f which is a standard version of a unimodal and symmetric around 0 density. |
k |
This is an integer value (k=1,2,3,…) for calculating μ_k=\int_{0}^{∞} 2s^k f(s) ds and γ_k=\int_{0}^{∞}s^{k-1}\frac{[f'(s)]^2}{f(s)}ds. |
mu |
This is the location parameter μ. |
phi |
This is the scale parameter φ. |
alpha |
This is the index parameter α. |
mu_1 |
This is the quantity \int_{0}^{∞} 2 s f(s) ds. |
mu_2 |
This is the quantity \int_{0}^{∞} 2 s^2 f(s) ds. |
mu_3 |
This is the quantity \int_{0}^{∞} 2 s^3 f(s) ds. |
mu_4 |
This is the quantity \int_{0}^{∞} 2 s^4 f(s) ds. |
r |
This is a value which is used to calculate the rth moment about μ. |
mu_k
provides the quantity \int_{0}^{∞} 2s^k f(s) ds, gamma_k
provides the quantity \int_{0}^{∞}s^{k-1}\frac{[f'(s)]^2}{f(s)}ds, meanQBAD
provides the mean, varQBAD
provides the variance, skewQBAD
provides the skewness, kurtQBAD
provides the kurtosis, and momentQBAD
provides the rth moment about the location parameter μ of the asymmetric family of distributions.
Gijbels, I., Karim, R. and Verhasselt, A. (2019a). On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, https://doi.org/10.1111/insr.12324.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Example 1: Let F be a standard normal cumulative distribution function then
f_N<-function(s){dnorm(s, mean = 0,sd = 1)} # density function of N(0,1)
mu_k(f=f_N,k=1)
gamma_k(f=f_N,k=1)
mu.1_N=sqrt(2/pi)
mu.2_N=1
mu.3_N=2*sqrt(2/pi)
mu.4_N=4
meanQBAD(mu=0,phi=1,alpha=0.5,mu_1=mu.1_N)
varQBAD(mu=0,phi=1,alpha=0.5,mu_1=mu.1_N,mu_2=mu.2_N)
skewQBAD(alpha=0.5,mu_1=mu.1_N,mu_2=mu.2_N,mu_3=mu.3_N)
kurtQBAD(alpha=0.5,mu_1=mu.1_N,mu_2=mu.2_N,mu_3=mu.3_N,mu_4=mu.4_N)
momentQBAD(phi=1,alpha=0.5,f=f_N,r=1)
# Example 2: Let F be a standard Laplace cumulative distribution function then
f_La<-function(s){0.5*exp(-abs(s))} # density function of Laplace(0,1)
mu_k(f=f_La,k=1)
gamma_k(f=f_La,k=1)
mu.1_La=1
mu.2_La=2
mu.3_La=6
mu.4_La=24
meanQBAD(mu=0,phi=1,alpha=0.5,mu_1=mu.1_La)
varQBAD(mu=0,phi=1,alpha=0.5,mu_1=mu.1_La,mu_2=mu.2_La)
skewQBAD(alpha=0.5,mu_1=mu.1_La,mu_2=mu.2_La,mu_3=mu.3_La)
kurtQBAD(alpha=0.5,mu_1=mu.1_La,mu_2=mu.2_La,mu_3=mu.3_La,mu_4=mu.4_La)
momentQBAD(phi=1,alpha=0.5,f=f_La,r=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.