Nothing
as.bugs.array2 <- function(sims.array, model.file=NULL, program="jags",
DIC=FALSE, DICOutput=NULL, n.iter=NULL, n.burnin=0, n.thin=1, checkMissing=FALSE)
{
## 'sims.array' is supposed to be a 3-way array with
# n.sims*n.chains*n.parameters simulations, and
# the 3rd component of dimnames(x) should have the parameter names.
## From Andrew Gelman's bugs.r function
## a couple of lines commented out by Eduardo Leoni (see comment below)
#require("R2WinBUGS")
d <- dim(sims.array)
n.keep <- d[1]
n.chains <- d[2]
n.parameters <- d[3]
n.sims <- n.keep*n.chains
if (is.null(n.iter)){
n.iter <- (n.keep + n.burnin)*n.thin
}
#
parameter.names <- dimnames(sims.array)[[3]]
if (is.null(parameter.names)) {
parameter.names <- paste("P", 1:n.parameters, sep="")
dimnames(sims.array)[[3]] <- parameter.names
}
parameters.to.save <- unique(sapply(strsplit(parameter.names, "\\["), "[", 1))
#
sims <- matrix(NA, n.sims, n.parameters)
root.long <- character(n.parameters)
indexes.long <- vector(n.parameters, mode = "list")
for (i in 1:n.parameters) {
temp <- .decode.parameter.name(parameter.names[i])
root.long[i] <- temp$root
indexes.long[[i]] <- temp$indexes
}
n.roots <- length(parameters.to.save)
left.bracket.short <- as.vector(regexpr("[[]", parameters.to.save))
right.bracket.short <- as.vector(regexpr("[]]", parameters.to.save))
root.short <- ifelse(left.bracket.short == -1, parameters.to.save,
substring(parameters.to.save, 1, left.bracket.short -1))
dimension.short <- rep(0, n.roots)
indexes.short <- vector(n.roots, mode = "list")
n.indexes.short <- vector(n.roots, mode = "list")
long.short <- vector(n.roots, mode = "list")
length.short <- numeric(n.roots)
for (j in 1:n.roots) {
long.short[[j]] <- (1:n.parameters)[root.long == root.short[j]]
length.short[j] <- length(long.short[[j]])
if (length.short[j] == 0){
stop(paste("parameter", root.short[[j]], "is not in the model"))
}
else if (length.short[j] > 1) {
dimension.short[j] <- length(indexes.long[[long.short[[j]][1]]])
n.indexes.short[[j]] <- numeric(dimension.short[j])
for (k in 1:dimension.short[j]){
n.indexes.short[[j]][k] <- length(unique(unlist(lapply(indexes.long[long.short[[j]]], .subset, k))))
}
length.short[j] <- prod(n.indexes.short[[j]])
## Modified by Eduardo Leoni
## this check fails if you take out a part of the simulations
## (for example, you don't want the array to have some of the
## parameters) so I took them out.
if (length(long.short[[j]]) != length.short[j]){
warning(paste("error/missing in parameter", root.short[[j]],"in parameters.to.save, \n Be aware of the output results.\n"), noBreaks.=TRUE)
}
indexes.short[[j]] <- as.list(numeric(length.short[j]))
for (k in 1:length.short[j]){
indexes.short[[j]][[k]] <- indexes.long[[long.short[[j]][k]]]
}
}
}
rank.long <- unlist(long.short)
# -----
# yes, it's inefficient to do this, but for now I'm just letting this be as it is:
for (k in 1:n.parameters) {
sims[,k] <- as.vector(sims.array[,,k])
}
# ----
dimnames(sims) <- list(NULL, parameter.names)
summary <- monitor(sims.array, n.chains, keep.all = TRUE)
last.values <- as.list(numeric(n.chains))
for(nn in 1:length(n.indexes.short)){
if(is.null(n.indexes.short[[nn]])){
n.indexes.short[[nn]] <- 1
}
}
for (i in 1:n.chains) {
n.roots.0 <- if (DIC){
n.roots - 1
}
else{
n.roots
}
last.values[[i]] <- as.list(numeric(n.roots.0))
names(last.values[[i]]) <- root.short[1:n.roots.0]
for (j in 1:n.roots.0) {
if (dimension.short[j] <= 1) {
last.values[[i]][[j]] <- sims.array[n.keep, i, long.short[[j]]]
names(last.values[[i]][[j]]) <- NULL
}
if (program=="jags"){
last.values[[i]][[j]] <- array(sims.array[n.keep, i, long.short[[j]]], n.indexes.short[[j]])
}
## only winbugs have to permute the array.
else {
last.values[[i]][[j]] <- aperm(array(sims.array[n.keep, i, long.short[[j]]], rev(n.indexes.short[[j]])), dimension.short[j]:1)
}
}
}
sims <- sims[sample(n.sims), , drop = FALSE]
sims.list <- summary.mean <- summary.sd <- summary.median <- summary.025 <- summary.975 <- vector(n.roots, mode = "list")
names(sims.list) <- names(summary.mean) <- names(summary.sd) <- names(summary.median) <- names(summary.025) <- names(summary.975) <- root.short
for (j in 1:n.roots) {
if (length.short[j] == 1) {
sims.list[[j]] <- sims[, long.short[[j]]]
summary.mean[[j]] <- summary[long.short[[j]], "mean"]
summary.sd[[j]] <- summary[long.short[[j]], "sd"]
summary.median[[j]] <- summary[long.short[[j]], "50%"]
##ell: added 025 and 975
summary.025[[j]] <- summary[long.short[[j]], "2.5%"]
summary.975[[j]] <- summary[long.short[[j]], "97.5%"]
}
if (program=="bugs") {
temp2 <- dimension.short[j]:1
sims.list[[j]] <- aperm(array(sims[, long.short[[j]]], c(n.sims, rev(n.indexes.short[[j]]))), c(1, (dimension.short[j] + 1):2))
summary.mean[[j]] <- aperm(array(summary[long.short[[j]], "mean"], rev(n.indexes.short[[j]])), temp2)
summary.sd[[j]] <- aperm(array(summary[long.short[[j]], "sd"], rev(n.indexes.short[[j]])), temp2)
summary.median[[j]] <- aperm(array(summary[long.short[[j]], "50%"], rev(n.indexes.short[[j]])), temp2)
##ell: added 025 and 975
# summary.025[[j]] <- aperm(array(summary[long.short[[j]], "2.5%"], rev(n.indexes.short[[j]])), temp2)
# summary.975[[j]] <- aperm(array(summary[long.short[[j]], "97.5%"], rev(n.indexes.short[[j]])), temp2)
}
if (program=="jags") {
##fix this list
#sims.list[[j]] <- aperm(array(sims[, long.short[[j]]], c(n.sims, rev(n.indexes.short[[j]]))), c(1, (dimension.short[j] + 1):2))
sims.list[[j]] <- array(sims[, long.short[[j]]], c(n.sims, n.indexes.short[[j]]))
# this is a quick fix to the case where elements in levels are missing, ie empty cells in a parameter matrix 2024.3.31
# the code is ugly. need to fix in the future. Add two hiddent functions below in the end of the page
if(checkMissing){
missingCell <- .checkEmptyCell(n.indexes.short[[j]], long.short[[j]], parameter.names)
if(length(missingCell)>1){
for(s in 1:n.sims){
sims.list[[j]][s,,][missingCell] <- NA
}
}
}
#sims.list[[j]] <- sims[, long.short[[j]]]
summary.mean[[j]] <- array(summary[long.short[[j]],"mean"],n.indexes.short[[j]])
summary.sd[[j]] <- array(summary[long.short[[j]],"sd"],n.indexes.short[[j]])
summary.median[[j]] <- array(summary[long.short[[j]],"50%"],n.indexes.short[[j]])
##ell: added 025 and 975
# summary.025[[j]] <- array(summary[long.short[[j]],"2.5%"],n.indexes.short[[j]])
# summary.975[[j]] <- array(summary[long.short[[j]],"97.5%"],n.indexes.short[[j]])
}
}
summary <- summary[rank.long,, drop = FALSE]
#all <- list(n.chains = n.chains, n.iter = n.iter, n.burnin = n.burnin,
# n.thin = n.thin, n.keep = n.keep, n.sims = n.sims,
# sims.array = sims.array[, , rank.long, drop = FALSE], sims.list = sims.list,
# sims.matrix = sims[, rank.long, drop = FALSE], summary = summary, mean = summary.mean,
# sd = summary.sd, median = summary.median, root.short = root.short,
# long.short = long.short, dimension.short = dimension.short,
# indexes.short = indexes.short, last.values = last.values,
# is.DIC=DIC, p02.5=summary.025, p97.5=summary.975)
all <- list(n.chains = n.chains, n.iter = n.iter, n.burnin = n.burnin,
n.thin = n.thin, n.keep = n.keep, n.sims = n.sims,
sims.array = sims.array[,,rank.long, drop = FALSE], sims.list = sims.list,
sims.matrix = sims[, rank.long, drop = FALSE], summary = summary, mean = summary.mean,
sd = summary.sd, median = summary.median, root.short = root.short,
long.short = long.short, dimension.short = dimension.short,
indexes.short = indexes.short, last.values = last.values, program=program,
model.file=model.file)
if(DIC && is.null(DICOutput)) { ## calculate DIC from deviance
deviance <- all$sims.array[, , "deviance", drop = FALSE]
dim(deviance) <- dim(deviance)[1:2]
# Modified by GB to rename pD to pV
pV <- numeric(n.chains)
DIC <- numeric(n.chains)
for (i in 1:n.chains) {
pV[i] <- var(deviance[, i])/2
DIC[i] <- mean(deviance[, i]) + pV[i]
}
all <- c(all, list(isDIC=TRUE, DICbyR=TRUE, pV=mean(pV), DIC=mean(DIC)))
}
#' GB: This is ported by R2WinBUGS/R2OpenBUGS and assumes that the model
#' is actually run using BUGS, which would mean you can actually compute
#' pD using BUGS output. In this case, because 'DICOutput' is set to 'NULL'
#' this bit is kind of ignored. But the drawback is that the only possibility
#' to compute pD is to go through 'rjags::dic.samples()'. I have added an
#' optional call to 'rjags::dic.samples' in 'jags' to compute pD
else if(DIC && !is.null(DICOutput)) { ## use DIC from BUGS
all <- c(all, list(isDIC=TRUE, DICbyR=FALSE,
pD=DICOutput[nrow(DICOutput),4],
DIC=DICOutput[nrow(DICOutput),3]))
}
else {
all <- c(all, isDIC=FALSE)
}
class(all) <- "bugs"
all
}
.checkEmptyCell <- function(n.indexes.short, long.short, parameter.names){
size1 <- prod(n.indexes.short)
size2 <- length(long.short)
if(size1 > size2){
paraNames <- parameter.names[long.short]
indicesLst <- lapply(paraNames, .extract_indices)
indices <- do.call(rbind, indicesLst)
paramMatrix <- matrix(FALSE, nrow = n.indexes.short[1], ncol = n.indexes.short[2])
paramMatrix[indices] <- TRUE
missingCell <- which(!paramMatrix, arr.ind = TRUE)
}else{
missingCell <- NA
}
return(missingCell)
}
.extract_indices <- function(parameter.names) {
#indices <- gregexpr("\\d+", parameter.names)[[1]]
#indices <- as.numeric(indices)
#indices <- gsub("\\d+", "", parameter.names) # Extract only digits
#indices <- as.numeric(indices)) # Split into individual digits and convert to numeric
indices <- str_match(parameter.names, "\\[(\\d+),(\\d+)\\]")[,-1]
indices <- matrix(as.numeric(indices), ncol = 2, byrow = TRUE)
#indices <- as.numeric(indices)
return(indices)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.