Nothing
#' @title Simulate a Trial Using Forward-Looking Gittins Index for Binary Endpoint
#' @description Function for simulating a trial using the forward-looking Gittins Index rule and the controlled forward-looking
#' Gittins Index rule for binary outcomes in trials with 2-5 arms. The conjugate prior distributions
#' follow Beta (\eqn{Beta(\alpha,\beta)}) distributions and should be the same for each arm.
#' @details This function simulates a trial using the forward-looking Gittins Index rule or the
#' controlled forward-looking Gittins Index rule under both no delay and delayed scenarios.
#' The cut-off value used for \code{stopbound} is obtained by simulations using \code{flgi_stop_bound_binary}.
#' Considering the delay mechanism, \code{Pats} (the number of patients accrued within a certain time frame),
#' \code{nMax} (the assumed maximum accrued number of patients with the disease in the population) and
#' \code{TimeToOutcome} (the distribution of delayed response times or a fixed delay time for responses)
#' are parameters in the functions adapted from \url{https://github.com/kwathen/IntroBayesianSimulation}.
#' Refer to the website for more details.
#' @aliases sim_flgi_binary
#' @export sim_flgi_binary
#' @param Gittinstype type of Gittins indices, should be set to 'binary' in this function.
#' @param df discount factor which is the multiplier for loss at each additional patient in the future.
#' Available values are 0, 0.5, 0.7, 0.99 and 0.995. The maximal sample size can be up to 2000.
#' @param gittins user specified Gittins indices for calculation in this function. Recommend using the
#' \code{bmab_gi_multiple_ab} function from \code{gittins} package. If \code{gittins} is provided,
#' \code{Gittinstype} and \code{df} should be NULL.
#' @param Pats the number of patients accrued within a certain time frame indicates the
#' count of individuals who have been affected by the disease during that specific period,
#' for example, a month or a day. If this number is 10, it represents that
#' 10 people have got the disease within the specified time frame.
#' @param nMax the assumed maximum accrued number of patients with the disease in the population, this number
#' should be chosen carefully to ensure a sufficient number of patients are simulated,
#' especially when considering the delay mechanism.
#' @param TimeToOutcome the distribution of delayed response times or a fixed delay time for responses.
#' The delayed time could be a month, a week or any other time frame. When the unit changes,
#' the number of TimeToOutcome should also change. It can be in the format
#' of expression(rnorm( length( vStartTime ),30, 3)), representing delayed responses
#' with a normal distribution, where the mean is 30 days and the standard deviation is 3 days.
#' @param enrollrate probability that patients in the population can enroll in the trial.
#' This parameter is related to the number of people who have been affected by the disease in the population,
#' following an exponential distribution.
#' @param I0 a matrix with K rows and 2 columns, where the numbers inside are equal to the prior parameters, and
#' K is equal to the total number of arms. For example, matrix(1,nrow=2,ncol=2) means that the prior
#' distributions for two-armed trials are beta(1,1); matrix(c(2,3),nrow=2,ncol=2,byrow = TRUE) means that the prior
#' distributions for two-armed trials are beta(2,3). The first column represents the prior of the number of successes,
#' and the second column represents the prior of the number of failures.
#' @param K number of total arms in the trial.
#' @param noRuns2 number of simulations for simulated allocation probabilities within each block. Default value is
#' set to 100, which is recommended in \insertCite{Villar2015}{RARtrials}.
#' @param Tsize maximal sample size for the trial.
#' @param ptrue a vector of hypotheses, for example, as c(0.1,0.1) where 0.1 stands for the success probability
#' for both groups. Another example is c(0.1,0.3) where 0.1 and 0.3 stand for the success probability for the control and
#' the treatment group, respectively.
#' @param block block size.
#' @param rule rules can be used in this function, with values 'FLGI PM', 'FLGI PD' or 'CFLGI'.
#' 'FLGI PM' stands for making decision based on posterior mean;
#' 'FLGI PD' stands for making decision based on posterior distribution;
#' 'CFLGI' stands for controlled forward-looking Gittins Index.
#' @param ztype Z test statistics, with choice of values from 'pooled' and 'unpooled'.
#' @param stopbound the cut-off value for Z test statistics, which is simulated under the null hypothesis.
#' @param side direction of a one-sided test, with values 'upper' or 'lower'.
#' @return \code{sim_flgi_binary} returns an object of class "flgi". An object of class "flgi" is a list containing
#' final decision based on the Z test statistics with 1 stands for selected and 0 stands for not selected, final decision based on
#' the maximal Gittins Index value at the final stage, Z test statistics, the simulated data set and participants accrued for each arm
#' at the time of termination of that group in one trial. The simulated data set includes 5 columns: participant ID number, enrollment time,
#' observed time of results, allocated arm, and participants' result.
#' @importFrom stats runif
#' @examples
#' #The forward-looking Gittins Index rule with delayed responses follow a normal distribution
#' #with a mean of 60 days and a standard deviation of 3 days
#' \donttest{
#' sim_flgi_binary(Gittinstype='Binary',df=0.5,Pats=10,nMax=50000,TimeToOutcome=expression(
#' rnorm( length( vStartTime ),60, 3)),enrollrate=0.9,I0= matrix(1,nrow=2,2),
#' K=2,Tsize=992,ptrue=c(0.6,0.7),block=20,rule='FLGI PM',ztype='unpooled',
#' stopbound=1.9991,side='upper')}
#' @references
#' \insertRef{Villar2015}{RARtrials}
sim_flgi_binary<-function(Gittinstype,df,gittins=NULL,Pats,nMax,TimeToOutcome,enrollrate,I0,K,noRuns2=100,Tsize,ptrue,block,rule,ztype,stopbound,side){
if (is.null(gittins)){
GI_binary <- Gittins(Gittinstype,df)
}else{
GI_binary <- gittins
}
index<-matrix(0,nrow=K,1)
phat<-matrix(0,nrow=1,K)
sigmahat<-matrix(0,nrow=1,K)
ns<-matrix(0,nrow=1,K)
sn<-matrix(0,nrow=1,K)
zs1<-matrix(0,nrow=1,K-1)
ap<-matrix(0,nrow=1,K-1)
popdat<-pop(Pats,nMax,enrollrate)
vStartTime<-sort(popdat[[3]][1:Tsize], decreasing = FALSE)
vOutcomeTime<-SimulateOutcomeObservedTime(vStartTime,TimeToOutcome)
data1<-matrix(NA_real_,nrow=Tsize,ncol=5)
data1[,1]<-1:Tsize
data1[,2]<-vStartTime
data1[,3]<-vOutcomeTime
n=matrix(rowSums(I0)+2,nrow=nrow(I0),1)
s=matrix(I0[,1]+1,nrow=nrow(I0),1)
f=matrix(I0[,2]+1,nrow=nrow(I0),1)
for (t in 0:((Tsize/block)-1)){
alp=allocation_probabilities(GI_binary=GI_binary,tt=t,data1=data1,I0=cbind(s-1,f-1),block=block,noRuns2=noRuns2,K1=K,rule=rule)
if (rule=='Controlled FLGI' ){
alp[1]=1/(K-1)
elp_e=allocation_probabilities1(GI_binary=GI_binary,tt=t,data1=data1,I0=cbind(s[2:K,]-1,f[2:K,]-1),block=block,noRuns2=noRuns2,K1=K-1,rule='FLGI PM')
c=alp[1]+sum(elp_e)
alp=(1/c)*c(alp[1],elp_e)
}
alp=cumsum(c(0,alp))
snext=s
fnext=f
nnext=n
Pob<-rep(0,block)
Pos<-rep(0,block)
for (p in 1:block){
Pob[p]<-runif(1)
for (k in 1:K){
if (Pob[p]>alp[k] & Pob[p]<=alp[k+1]){
nnext[k]=n[k]+1
if (runif(1)<=ptrue[k]){
Pos[p]=1
}else{
Pos[p]=0
}
data1[t*block+p,4]=k
data1[t*block+p,5]=Pos[p]
}
}
total1<-sum(as.numeric(data1[,3])<=as.numeric(data1[t*block+p,2]))
for (k in 1:K){
if (total1>0){
dataa<-matrix(data1[which(as.numeric(data1[,3])<=as.numeric(data1[t*block+p,2])),],ncol=5)
snext[k,1]=nrow(dataa[dataa[,4]==k & dataa[,5]==1,,drop=F])+2
fnext[k,1]=nrow(dataa[dataa[,4]==k & dataa[,5]==0,,drop=F])+2
}else if (total1==0){
snext[k,1]=s[k,1]
fnext[k,1]=f[k,1]
}
}
s=snext
f=fnext
n=nnext
}
}
if ((Tsize %% block)!=0){
Pob<-rep(0,(Tsize %% block))
Posi<-rep(0,(Tsize %% block))
for (p in 1:((Tsize %% block))){
Pob[p]<-runif(1)
for (k in 1:K){
if (Pob[p]>alp[k] & Pob[p]<=alp[k+1]){
nnext[k]=n[k]+1
if (runif(1)<=ptrue[k]){
Posi[p]=1
}else {
Posi[p]=0
}
data1[floor(Tsize/block)*block+p,4]=k
data1[floor(Tsize/block)*block+p,5]=Posi[p]
}
}
total1<-sum(as.numeric(data1[,3])<=as.numeric(data1[floor(Tsize/block)*block+p,2]))
for (k in 1:K){
if (total1>0){
dataa<-matrix(data1[which(as.numeric(data1[,3])<=as.numeric(data1[floor(Tsize/block)*block+p,2])),],ncol=5)
snext[k,1]=nrow(dataa[dataa[,4]==k & dataa[,5]==1,,drop=F])+2
fnext[k,1]=nrow(dataa[dataa[,4]==k & dataa[,5]==0,,drop=F])+2
}else if (total1==0){
snext[k,1]=s[k,1]
fnext[k,1]=f[k,1]
}
}
s=snext
f=fnext
n=nnext
}
}
for (k in 1:K){
s[k,1]=nrow(data1[data1[,4]==k & data1[,5]==1,,drop=F])+2
f[k,1]=nrow(data1[data1[,4]==k & data1[,5]==0,,drop=F])+2
n[k,1]=nrow(data1[data1[,4]==k ,,drop=F])+4
}
ns[1,]=n-2
sn[1,]=s-1
phat[1,]=(s-1)/(n-2)
if (ztype=='unpooled'){
sigmahat[1,]=(phat[1,]*(1-phat[1,]))/ns[1,]
} else if (ztype=='pooled'){
for (k in 2:K){
sigmahat[1,k]= (sum(sn[1]+sn[k])/sum(ns[1]+ns[k]))*
(1-(sum(sn[1]+sn[k])/sum(ns[1]+ns[k])))*
(1/ns[1] +1/ns[k])
}
}
sigma<-matrix(0,K-1,K-1)
sigmat<-matrix(0,K-1,K-1)
pc<-matrix(0,1,K-1)
for (k in 1:(K-1)){
if (ztype=='unpooled'){
zs1[1,k]=(phat[1,k+1]-phat[1,1])/sqrt(sigmahat[1,1]+sigmahat[1,k+1])
} else if (ztype=='pooled'){
zs1[1,k]=(phat[1,k+1]-phat[1,1])/sqrt(sigmahat[1,k+1])
}
}
b1<-matrix(0,nrow=1,(K-1))
for (k in 1:(K-1)){
if (side=='upper'){
if(zs1[1,k]>=stopbound ){
b1[1,k]=1
}else{
b1[1,k]=0
}
}else if (side=='lower'){
if(zs1[1,k]<=stopbound ){
b1[1,k]=1
}else{
b1[1,k]=0
}
}
}
indexa<-matrix(0,1,K)
for (k in 1:K){
indexa[1,k] = GI_binary[ns[1,k]-sn[1,k]+2,sn[1,k]+1]
}
decision=max.col(indexa)
#return(list(b1,decision,zs1,data1,n[,1]-4))
output1<-list(b1,decision,zs1,data1,n[,1]-4)
class(output1)<-'flgi'
return(output1)
}
#' @export
print.flgi<-function(x,...){
cat("\nFinal Decision:\n",paste(x[[1]],sep=', ',collapse=', '),"\n")
cat("\nTest Statistics:\n",paste(round(x[[3]],2),sep=', ',collapse=', '),"\n")
cat("\nAccumulated Number of Participants in Each Arm:\n",paste(x[[5]],sep=', ',collapse=', '))
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.