Nothing
#' @title Simulate a Trial Using Forward-Looking Gittins Index for Continuous Endpoint with Known Variances
#' @description Function for simulating a trial using the forward-looking Gittins Index rule and the controlled forward-looking
#' Gittins Index rule for continuous outcomes with known variances in trials with 2-5 arms. The conjugate prior distributions
#' follow Normal (\eqn{N({\sf mean},{\sf sd})}) distributions and should be the same for each arm.
#' @details This function simulates a trial using the forward-looking Gittins Index rule or the
#' controlled forward-looking Gittins Index rule under both no delay and delayed scenarios.
#' The cut-off value used for \code{stopbound} is obtained by simulations using \code{flgi_stop_bound_flgi_known_var}.
#' Considering the delay mechanism, \code{Pats} (the number of patients accrued within a certain time frame),
#' \code{nMax} (the assumed maximum accrued number of patients with the disease in the population) and
#' \code{TimeToOutcome} (the distribution of delayed response times or a fixed delay time for responses)
#' are parameters in the functions adapted from \url{https://github.com/kwathen/IntroBayesianSimulation}.
#' Refer to the website for more details.
#' @aliases sim_flgi_known_var
#' @export sim_flgi_known_var
#' @param Gittinstype type of Gittins indices, should be set to 'KV' in this function.
#' @param df discount factor which is the multiplier for loss at each additional patient in the future.
#' Available values are 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and 0.995. The maximal sample size can be up to 10000.
#' @param gittins user specified Gittins indices for calculation in this function. If \code{gittins} is provided,
#' \code{Gittinstype} and \code{df} should be NULL.
#' @param Pats the number of patients accrued within a certain time frame indicates the
#' count of individuals who have been affected by the disease during that specific period,
#' for example, a month or a day. If this number is 10, it represents that
#' 10 people have got the disease within the specified time frame.
#' @param nMax the assumed maximum accrued number of patients with the disease in the population, this number
#' should be chosen carefully to ensure a sufficient number of patients are simulated,
#' especially when considering the delay mechanism.
#' @param TimeToOutcome the distribution of delayed response times or a fixed delay time for responses.
#' The delayed time could be a month, a week or any other time frame. When the unit changes,
#' the number of TimeToOutcome should also change. It can be in the format
#' of expression(rnorm( length( vStartTime ),30, 3)), representing delayed responses
#' with a normal distribution, where the mean is 30 days and the standard deviation is 3 days.
#' @param enrollrate probability that patients in the population can enroll in the trial.
#' This parameter is related to the number of people who have been affected by the disease in the population,
#' following an exponential distribution.
#' @param K number of total arms in the trial.
#' @param noRuns2 number of simulations for simulated allocation probabilities within each block. Default value is
#' set to 100, which is recommended in \insertCite{Villar2015}{RARtrials}.
#' @param Tsize maximal sample size for the trial.
#' @param block block size.
#' @param rule rules can be used in this function, with values 'FLGI PM', 'FLGI PD' or 'CFLGI'.
#' 'FLGI PM' stands for making decision based on posterior mean;
#' 'FLGI PD' stands for making decision based on posterior distribution;
#' 'CFLGI' stands for controlled forward-looking Gittins Index.
#' @param prior_n a vector representing the number of observations assumed in prior distributions, eg: c(1,1) for a two-armed trial.
#' @param prior_mean a vector representing mean of observations assumed in prior distributions, eg: c(0,0,0) for a three-armed trial,
#' rep(0,K) can be used to simplify the process. If a negative effect is expected, adjust the mean to a negative value.
#' @param stopbound the cut-off value for Z test statistics, which is simulated under the null hypothesis.
#' @param mean a vector of mean hypotheses, for example, c(0.1,0.1) where 0.1 stands for the mean
#' for both groups. Another example is c(0.1,0.3) where 0.1 and 0.3 stand for the mean for the control and
#' a treatment group, respectively.
#' @param sd a vector of standard deviation in hypotheses, for example, as c(0.64,0.64) where 0.64 stands for the standard deviation
#' for both groups. Another example is c(0.64,0.4) where 0.64 and 0.4 stand for the standard deviation for the control and
#' a treatment group, respectively.
#' @param side direction of a one-sided test, with values 'upper' or 'lower'.
#' @return \code{sim_flgi_known_var} returns an object of class "flgi". An object of class "flgi" is a list containing
#' final decision based on the Z test statistics with 1 stands for selected and 0 stands for not selected, final decision based on
#' the maximal Gittins Index value at the final stage, Z test statistics, the simulated data set and participants accrued for each arm
#' at the time of termination of that group in one trial. The simulated data set includes 5 columns: participant ID number, enrollment time,
#' observed time of results, allocated arm, and participants' result.
#' @importFrom stats runif
#' @importFrom stats rnorm
#' @examples
#' #The forward-looking Gittins Index rule with delayed responses follow a normal distribution
#' #with a mean of 30 days and a standard deviation of 3 days
#' \donttest{
#' sim_flgi_known_var(Gittinstype='KV',df=0.995,Pats=10,nMax=50000,
#' TimeToOutcome=expression(rnorm( length( vStartTime ),30, 3)),enrollrate=0.5,
#' K=3,noRuns2=100,Tsize=852,block=20,rule='FLGI PM',prior_n=rep(1,3),
#' prior_mean=rep(9/100,3),stopbound=(-2.1725),mean=c(9.1/100,8.83/100,8.83/100),
#' sd=c(0.009,0.009,0.009),side='lower')}
#'
#' #The controlled forward-looking Gittins Index rule with delayed responses follow a
#' #normal distribution with a mean of 30 days and a standard deviation of 3 days
#' \donttest{
#' sim_flgi_known_var(Gittinstype='KV',df=0.995,Pats=10,nMax=50000,
#' TimeToOutcome=expression(rnorm( length( vStartTime ),30, 3)),enrollrate=0.1,
#' K=3,noRuns2=100,Tsize=852,block=20,rule='CFLGI',prior_n=rep(1,3),
#' prior_mean=rep(9/100,3),stopbound=(-2.075),mean=c(9.1/100,8.83/100,8.83/100),
#' sd=c(0.009,0.009,0.009),side='lower')}
#'
#' @references
#' \insertRef{Williamson2019}{RARtrials}
sim_flgi_known_var<-function(Gittinstype,df,gittins=NULL,Pats,nMax,TimeToOutcome,enrollrate,K,noRuns2,Tsize,block,rule,
prior_n,prior_mean,stopbound,mean,sd,side){
if (is.null(gittins)){
GI_Normal_known <- Gittins(Gittinstype,df)
}else{
GI_Normal_known <- gittins
}
index<-matrix(0,nrow=K,1)
meanhat<-matrix(0,nrow=1,K)
sigmahat<-matrix(0,nrow=1,K)
GI_Std<-rep(0,K)
zs1<-matrix(0,nrow=1,K-1)
ap1<-matrix(0,nrow=1,K-1)
popdat<-pop(Pats,nMax,enrollrate)
vStartTime<-sort(popdat[[3]][1:Tsize], decreasing = FALSE)
vOutcomeTime<-SimulateOutcomeObservedTime(vStartTime,TimeToOutcome)
data1<-matrix(NA_real_,nrow=Tsize,ncol=5)
data1[,1]<-1:Tsize
data1[,2]<-vStartTime
data1[,3]<-vOutcomeTime
n=matrix(NA,nrow=K,1)
nn<-rep(0,K)
sample_mean<-rep(NA,K)
for (t in 0:((Tsize/block)-1)){
alp=allocation_probabilities_kn_var(GI_Normal_known=GI_Normal_known,tt=t,data1=data1,arms=K,b=block,runs=noRuns2,
prior_mean=prior_mean,prior_n=prior_n,sd1=sd,side=side)
if (rule=='Controlled FLGI' ){
alp[1]=1/(K-1)
elp_e=allocation_probabilities_kn_var1(GI_Normal_known=GI_Normal_known,tt=t,data1=data1,arms=K,b=block,runs=noRuns2,
prior_mean=prior_mean,prior_n=prior_n,sd1=sd,side=side)
c=alp[1]+sum(elp_e)
alp=(1/c)*c(alp[1],elp_e)
}
alp=cumsum(c(0,alp))
Pob<-rep(0,block)
Pos<-rep(0,block)
for (p in 1:block){
Pob[p]<-runif(1)
for (k in 1:K){
if (Pob[p]>alp[k] & Pob[p]<=alp[k+1]){
Pos[p]=rnorm(1, mean[k], sd[k])
data1[t*block+p,4]=k
data1[t*block+p,5]=Pos[p]
}
}
}
}
if ((Tsize %% block)!=0){
Pob<-rep(0,(Tsize %% block))
Posi<-rep(0,(Tsize %% block))
for (p in 1:(Tsize %% block)){
Pob[p]<-runif(1)
for (k in 1:K){
if (Pob[p]>alp[k] & Pob[p]<=alp[k+1]){
Posi[p]=rnorm(1, mean[k], sd[k])
data1[floor(Tsize/block)*block+p,4]=k
data1[floor(Tsize/block)*block+p,5]=Posi[p]
}
}
}
}
sdd<-rep(NA,K)
sddd<-rep(NA,K)
for (k in 1:K){
n[k,1]=nrow(data1[which(data1[,4]==k ),,drop=FALSE])
meanhat[1,k]=(sum(data1[data1[,4]==k,5])) / n[k,1]
indexs<-n[k,1]+prior_n[k]
GI_Std[k] <- GI_Normal_known[ indexs ]
}
pc<-matrix(0,1,K-1)
for (k in 1:(K-1)){
zs1[1,k]=(meanhat[1,k+1]-meanhat[1,1])/sqrt((sd[1])^2/n[1,1]+(sd[k+1])^2/n[k+1,1])
}
for (k in 1:(K-1)){
if (side=='upper'){
if(zs1[1,k]>=stopbound){
ap1[1,k]=1
}else{
ap1[1,k]=0
}
}else if (side=='lower'){
if(zs1[1,k]<=stopbound){
ap1[1,k]=1
}else{
ap1[1,k]=0
}
}
}
#### If options=1, then selection is done based on GI criteria
indexa<-matrix(0,1,K)
for (k in 1:K){
if (rule %in% c('FLGI PM', 'Controlled Gittins','FLGI PD')){
if (side=='upper'){
indexa[1,k] =meanhat[1,k] + sd[k]*GI_Std[k]
}else if (side=='lower'){
indexa[1,k] =(-meanhat[1,k]) + sd[k]*GI_Std[k]
}
}
}
decision= max.col(indexa)
# return(list(ap1,decision,zs1,data1,n[,1]))
output1<-list(ap1,decision,zs1,data1,n[,1])
class(output1)<-'flgi'
return(output1)
}
#' @export
print.flgi<-function(x,...){
cat("\nFinal Decision:\n",paste(x[[1]],sep=', ',collapse=', '),"\n")
cat("\nTest Statistics:\n",paste(round(x[[3]],2),sep=', ',collapse=', '),"\n")
cat("\nAccumulated Number of Participants in Each Arm:\n",paste(x[[5]],sep=', ',collapse=', '))
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.