Description Usage Arguments Details Value Author(s) References See Also Examples
Calculating three measures of regional specialization (Gini, Krugman, Hoover) for a set of J regions
1 |
e_ij |
a numeric vector with the employment of the industry i in region j |
industry.id |
a vector containing the IDs of the industries i |
region.id |
a vector containing the IDs of the regions j |
na.rm |
logical argument that indicates whether NA values should be excluded before computing results |
This function is a convenient wrapper for all functions calculating measures of regional specialization (Gini, Krugman, Hoover)
A matrix
with three columns (Gini coefficient, Krugman coefficient, Hoover coefficient) and J rows (one for each regarded region).
Thomas Wieland
Farhauer, O./Kroell, A. (2014): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Schaetzl, L. (2000): “Wirtschaftsgeographie 2: Empirie”. Paderborn : Schoeningh.
gini.spec
, krugman.spec2
, hoover
1 2 3 4 5 | data(G.regions.industries)
spec_j <- spec (e_ij = G.regions.industries$emp_all,
industry.id = G.regions.industries$ind_code,
region.id = G.regions.industries$region_code)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.