spec: Measures of regional specialization

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Calculating three measures of regional specialization (Gini, Krugman, Hoover) for a set of J regions

Usage

1
spec(e_ij, industry.id, region.id, na.rm = TRUE)

Arguments

e_ij

a numeric vector with the employment of the industry i in region j

industry.id

a vector containing the IDs of the industries i

region.id

a vector containing the IDs of the regions j

na.rm

logical argument that indicates whether NA values should be excluded before computing results

Details

This function is a convenient wrapper for all functions calculating measures of regional specialization (Gini, Krugman, Hoover)

Value

A matrix with three columns (Gini coefficient, Krugman coefficient, Hoover coefficient) and J rows (one for each regarded region).

Author(s)

Thomas Wieland

References

Farhauer, O./Kroell, A. (2014): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

Schaetzl, L. (2000): “Wirtschaftsgeographie 2: Empirie”. Paderborn : Schoeningh.

See Also

gini.spec, krugman.spec2, hoover

Examples

1
2
3
4
5
data(G.regions.industries)

spec_j <- spec (e_ij = G.regions.industries$emp_all, 
industry.id = G.regions.industries$ind_code,
region.id = G.regions.industries$region_code)

REAT documentation built on Sept. 5, 2021, 5:18 p.m.