Nothing
#' object to optimize the point by ALD criterion updating V1 with two levels of fidelity
#'
#' @param Xcand candidate data point to be optimized.
#' @param fit an object of class RNAmf.
#' @return A negative V1 at Xcand.
#' @noRd
#'
obj.ALD_V1_2level <- function(fit, Xcand) { # low
newx <- matrix(Xcand, nrow = 1)
kernel <- fit$kernel
constant <- fit$constant
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
if (kernel == "sqex") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.GP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
predy <- mu2 + (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w1.x2, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2 / theta[d + 1]) *
exp(-(outer(w1.x2, w1.x2, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w1.x2, w1.x2, FUN = "-"))^2 / (2 * theta[d + 1]))
VE <- - (predy - mu2)^2 + drop(t(a) %*% mat %*% a)
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.GP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
predy <- (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w1.x2, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2 / theta[d + 1]) *
exp(-(outer(w1.x2, w1.x2, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w1.x2, w1.x2, FUN = "-"))^2 / (2 * theta[d + 1]))
VE <- - predy^2 + drop(t(a) %*% mat %*% a)
}
} else if (kernel == "matern1.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- mu2 + drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
VE <- - (predy - mu2)^2 + drop(t(a) %*% mat %*% a)
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
VE <- - predy^2 + drop(t(a) %*% mat %*% a)
}
} else if (kernel == "matern2.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w1.x2))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w1.x2))
e1 <- cbind(
matrix(1 - sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- mu2 + drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
VE <- - (predy - mu2)^2 + drop(t(a) %*% mat %*% a)
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w1.x2))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w1.x2))
e1 <- cbind(
matrix(1 - sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
VE <- - predy^2 + drop(t(a) %*% mat %*% a)
}
}
return(-VE) # to maximize the V1.
}
#' object to optimize the point by ALD criterion updating V2 with two levels of fidelity
#'
#' @param Xcand candidate data point to be optimized.
#' @param fit an object of class RNAmf.
#' @return A negative V2 at Xcand.
#' @noRd
#'
obj.ALD_V2_2level <- function(fit, Xcand) { # high
newx <- matrix(Xcand, nrow = 1)
kernel <- fit$kernel
constant <- fit$constant
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
if (kernel == "sqex") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.GP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
predy <- mu2 + (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w1.x2, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2 / theta[d + 1]) *
exp(-(outer(w1.x2, w1.x2, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w1.x2, w1.x2, FUN = "-"))^2 / (2 * theta[d + 1]))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.GP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
predy <- (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w1.x2, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X2) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2 / theta[d + 1]) *
exp(-(outer(w1.x2, w1.x2, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w1.x2, w1.x2, FUN = "-"))^2 / (2 * theta[d + 1]))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
} else if (kernel == "matern1.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- mu2 + drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w1.x2 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
} else if (kernel == "matern2.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2 #* 0
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
mu2 <- fit2$mu.hat
Ci <- fit2$Ki
a <- Ci %*% (y2 - mu2)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w1.x2))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w1.x2))
e1 <- cbind(
matrix(1 - sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- mu2 + drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.fit <- pred.matGP(fit1, newx)
x.mu <- pred.fit$mu # mean of f1(u)
sig2 <- pred.fit$sig2
### calculate the closed form ###
X2 <- matrix(fit2$X[, -(d + 1)], ncol = d)
w1.x2 <- fit2$X[, d + 1]
y2 <- fit2$y
n <- length(y2)
theta <- fit2$theta
tau2hat <- fit2$tau2hat
Ci <- fit2$Ki
# a <- Ci %*% (y2 + attr(y2, "scaled:center"))
a <- Ci %*% y2
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit2$X, "scaled:center")[1:d], attr(fit2$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit2$X, "scaled:center")[d + 1], attr(fit2$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit2$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w1.x2))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w1.x2))
e1 <- cbind(
matrix(1 - sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w1.x2 / theta[d + 1] + 5 * w1.x2^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w1.x2 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- drop(t(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w1.x2) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w1.x2 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w1.x2) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w1.x2 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X2, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w1.x2, w1.x2, FUN = Vectorize(zeta))
EV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
}
return(-EV) # to maximize the V2.
}
#' object to optimize the point by ALD criterion updating V1 with three levels of fidelity
#'
#' @param Xcand candidate data point to be optimized.
#' @param fit an object of class RNAmf.
#' @param mc.sample a number of mc samples generated for this approach. Default is 100.
#' @param parallel logical indicating whether to run parallel or not. Default is FALSE.
#' @param ncore the number of core for parallel. Default is 1.
#' @return A negative V1 at Xcand.
#' @importFrom stats var
#' @noRd
#'
obj.ALD_V1_3level <- function(fit, Xcand, mc.sample, parallel = FALSE, ncore = 1) { # low
kernel <- fit$kernel
constant <- fit$constant
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
fit3 <- fit$fits[[3]]
d <- ncol(fit1$X)
newx <- matrix(Xcand, nrow = 1)
if (kernel == "sqex") {
y1.sample <- rnorm(mc.sample, mean = pred.GP(fit1, newx)$mu, sd = sqrt(pred.GP(fit1, newx)$sig2))
} else if (kernel == "matern1.5") {
y1.sample <- rnorm(mc.sample, mean = pred.matGP(fit1, newx)$mu, sd = sqrt(pred.matGP(fit1, newx)$sig2))
} else if (kernel == "matern2.5") {
y1.sample <- rnorm(mc.sample, mean = pred.matGP(fit1, newx)$mu, sd = sqrt(pred.matGP(fit1, newx)$sig2))
}
### V1 MC approximation ###
if (parallel) {
VEE.out <- foreach(i = 1:mc.sample, .combine = c) %dopar% {
if (kernel == "sqex") {
pred2 <- pred.GP(fit2, cbind(newx, y1.sample[i]))
} else if (kernel == "matern1.5") {
pred2 <- pred.matGP(fit2, cbind(newx, y1.sample[i]))
} else if (kernel == "matern2.5") {
pred2 <- pred.matGP(fit2, cbind(newx, y1.sample[i]))
}
x.mu <- pred2$mu
sig2 <- pred2$sig2
if (kernel == "sqex") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
VEE <- (exp(-distance(t(t(newx1) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
VEE <- (exp(-distance(t(t(newx1) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
}
} else if (kernel == "matern1.5") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
}
} else if (kernel == "matern2.5") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
}
}
return(VEE) # to maximize the V1.
}
} else {
VEE.out <- rep(0, mc.sample)
for (i in 1:mc.sample) {
if (kernel == "sqex") {
pred2 <- pred.GP(fit2, cbind(newx, y1.sample[i]))
} else if (kernel == "matern1.5") {
pred2 <- pred.matGP(fit2, cbind(newx, y1.sample[i]))
} else if (kernel == "matern2.5") {
pred2 <- pred.matGP(fit2, cbind(newx, y1.sample[i]))
}
x.mu <- pred2$mu
sig2 <- pred2$sig2
if (kernel == "sqex") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
VEE <- (exp(-distance(t(t(newx1) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
VEE <- (exp(-distance(t(t(newx1) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
}
} else if (kernel == "matern1.5") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
}
} else if (kernel == "matern2.5") {
if (constant) {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
} else {
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx1 <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
newx1 <- newx
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
VEE <- drop(t(t(cor.sep(t(newx1), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
}
}
VEE.out[i] <- VEE # to maximize the V1.
}
}
return(-var(VEE.out)) # to maximize the V1.
}
#' object to optimize the point by ALD criterion updating V2 with three levels of fidelity
#'
#' @param Xcand candidate data point to be optimized.
#' @param fit an object of class RNAmf.
#' @param mc.sample a number of mc samples generated for this approach. Default is 100.
#' @param parallel logical indicating whether to run parallel or not. Default is FALSE.
#' @param ncore the number of core for parallel. Default is 1.
#' @return A negative V2 at Xcand.
#' @noRd
#'
obj.ALD_V2_3level <- function(fit, Xcand, mc.sample, parallel = FALSE, ncore = 1) { # med
V <- predict(fit, Xcand)$sig2[[3]]
EVE <- V +
obj.ALD_V1_3level(fit, Xcand, mc.sample, parallel = FALSE, ncore = 1) +# -V1
obj.ALD_V3_3level(fit, Xcand) # -V3
return(-EVE) # to maximize the V2.
}
#' object to optimize the point by ALD criterion updating V3 with three levels of fidelity
#'
#' @param Xcand candidate data point to be optimized.
#' @param fit an object of class RNAmf.
#' @return A negative V2 at Xcand.
#' @noRd
#'
obj.ALD_V3_3level <- function(fit, Xcand) { # high
newx <- matrix(Xcand, nrow = 1)
kernel <- fit$kernel
constant <- fit$constant
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
fit3 <- fit$fits[[3]]
if (kernel == "sqex") {
if (constant) {
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
predy <- mu3 + (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2 / theta[d + 1]) *
exp(-(outer(w2.x3, w2.x3, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w2.x3, w2.x3, FUN = "-"))^2 / (2 * theta[d + 1]))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
predy <- (exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) *
1 / sqrt(1 + 2 * sig2 / theta[d + 1]) *
exp(-(drop(outer(x.mu, w2.x3, FUN = "-")))^2 / (theta[d + 1] + 2 * sig2))) %*% a
# var
mat <- drop(exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)])))) %o%
exp(-distance(t(t(newx) / sqrt(theta[-(d + 1)])), t(t(X3) / sqrt(theta[-(d + 1)]))))) * # common components
1 / sqrt(1 + 4 * sig2[i] / theta[d + 1]) *
exp(-(outer(w2.x3, w2.x3, FUN = "+") / 2 - matrix(x.mu, n, n))^2 / (theta[d + 1] / 2 + 2 * sig2)) *
exp(-(outer(w2.x3, w2.x3, FUN = "-"))^2 / (2 * theta[d + 1]))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
} else if (kernel == "matern1.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- mu3 + drop(t(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w2.x3, w2.x3, FUN = Vectorize(zeta))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(3) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(3) * sig2 / theta[d + 1]
lambda11 <- c(1, mua)
lambda12 <- c(0, 1)
lambda21 <- c(1, -mub)
e1 <- cbind(matrix(1 - sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
e2 <- cbind(matrix(1 + sqrt(3) * w2.x3 / theta[d + 1]), sqrt(3) / theta[d + 1])
predy <- drop(t(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5)) * # common but depends on kernel
(exp((3 * sig2 + 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
e1 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((3 * sig2 - 2 * sqrt(3) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
e2 %*% lambda12 * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 1.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5)) %o% t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 1.5))) * # constant depends on kernel
outer(w2.x3, w2.x3, FUN = Vectorize(zeta))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
} else if (kernel == "matern2.5") {
if (constant) {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
mu3 <- fit3$mu.hat
Ci <- fit3$Ki
a <- Ci %*% (y3 - mu3)
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- mu3 + drop(t(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w2.x3, w2.x3, FUN = Vectorize(zeta))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
} else {
d <- ncol(fit1$X)
newx <- matrix(newx, ncol = d)
pred.RNAmf_two_level <- predict(fit, newx)
x.mu <- pred.RNAmf_two_level$mu[[2]]
sig2 <- pred.RNAmf_two_level$sig2[[2]]
### calculate the closed form ###
X3 <- matrix(fit3$X[, -(d + 1)], ncol = d)
w2.x3 <- fit3$X[, d + 1]
y3 <- fit3$y
n <- length(y3)
theta <- fit3$theta
tau2hat <- fit3$tau2hat
Ci <- fit3$Ki
# a <- Ci %*% (y3 + attr(y3, "scaled:center"))
a <- Ci %*% y3
# ### scale new inputs ###
# newx <- scale_inputs(newx, attr(fit3$X, "scaled:center")[1:d], attr(fit3$X, "scaled:scale")[1:d])
# x.mu <- scale_inputs(x.mu, attr(fit3$X, "scaled:center")[d + 1], attr(fit3$X, "scaled:scale")[d + 1])
# sig2 <- sig2 / attr(fit3$X, "scaled:scale")[d + 1]^2
# mean
mua <- x.mu - sqrt(5) * sig2 / theta[d + 1]
mub <- x.mu + sqrt(5) * sig2 / theta[d + 1]
lambda11 <- c(1, mua, mua^2 + sig2)
lambda12 <- cbind(0, 1, matrix(mua + w2.x3))
lambda21 <- c(1, -mub, mub^2 + sig2)
lambda22 <- cbind(0, 1, matrix(-mub - w2.x3))
e1 <- cbind(
matrix(1 - sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] - 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
e2 <- cbind(
matrix(1 + sqrt(5) * w2.x3 / theta[d + 1] + 5 * w2.x3^2 / (3 * theta[d + 1]^2)),
matrix(sqrt(5) / theta[d + 1] + 10 * w2.x3 / (3 * theta[d + 1]^2)),
5 / (3 * theta[d + 1]^2)
)
predy <- drop(t(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5)) *
(exp((5 * sig2 + 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e1 %*% lambda11 * pnorm((mua - w2.x3) / sqrt(sig2)) +
rowSums(e1 * lambda12) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mua)^2 / (2 * sig2))) +
exp((5 * sig2 - 2 * sqrt(5) * theta[d + 1] * (w2.x3 - x.mu)) / (2 * theta[d + 1]^2)) *
(e2 %*% lambda21 * pnorm((-mub + w2.x3) / sqrt(sig2)) +
rowSums(e2 * lambda22) * sqrt(sig2) / sqrt(2 * pi) * exp(-(w2.x3 - mub)^2 / (2 * sig2))))) %*% a)
# var
zeta <- function(x, y) {
zetafun(w1 = x, w2 = y, m = x.mu, s = sig2, nu = 2.5, theta = theta[d + 1])
}
mat <- drop(t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5)) %o% t(cor.sep(t(newx), X3, theta[-(d + 1)], nu = 2.5))) * # constant depends on kernel
outer(w2.x3, w2.x3, FUN = Vectorize(zeta))
EEV <- tau2hat - tau2hat * sum(diag(Ci %*% mat))
}
}
return(-EEV) # to maximize the V3.
}
#' @title find the next point by ALD criterion
#'
#' @description The function acquires the new point by the Active learning Decomposition (ALD) criterion.
#' It calculates the ALD criterion \eqn{\frac{V_l(\bm{x})}{\sum^l_{j=1}C_j}},
#' where \eqn{V_l(\bm{x})} is the contribution of GP emulator
#' at each fidelity level \eqn{l} and \eqn{C_j} is the simulation cost at level \eqn{j}.
#' For details, see Heo and Sung (2025, <\doi{https://doi.org/10.1080/00401706.2024.2376173}>).
#'
#' A new point is acquired on \code{Xcand}. If \code{Xcand=NULL}, a new point is acquired on unit hypercube \eqn{[0,1]^d}.
#'
#' @param Xcand vector or matrix of candidate set which could be added into the current design only used when \code{optim=FALSE}. \code{Xcand} is the set of the points where ALD criterion is evaluated. If \code{Xcand=NULL}, \eqn{100 \times d} number of points from 0 to 1 are generated by Latin hypercube design. Default is \code{NULL}.
#' @param fit object of class \code{RNAmf}.
#' @param mc.sample a number of mc samples generated for the MC approximation in 3 levels case. Default is \code{100}.
#' @param cost vector of the costs for each level of fidelity. If \code{cost=NULL}, total costs at all levels would be 1. \code{cost} is encouraged to have an ascending order of positive value. Default is \code{NULL}.
#' @param optim logical indicating whether to optimize AL criterion by \code{optim}'s gradient-based \code{L-BFGS-B} method. If \code{optim=TRUE}, \eqn{5 \times d} starting points are generated by Latin hypercube design for optimization. If \code{optim=FALSE}, AL criterion is optimized on the \code{Xcand}. Default is \code{TRUE}.
#' @param parallel logical indicating whether to compute the AL criterion in parallel or not. If \code{parallel=TRUE}, parallel computation is utilized. Default is \code{FALSE}.
#' @param ncore a number of core for parallel. It is only used if \code{parallel=TRUE}. Default is 1.
#' @param trace logical indicating whether to print the computational time for each step. If \code{trace=TRUE}, the computation time for each step is printed. Default is \code{FALSE}.
#' @return
#' \itemize{
#' \item \code{ALD}: list of ALD criterion computed at each point of \code{Xcand} at each level if \code{optim=FALSE}. If \code{optim=TRUE}, \code{ALD} returns \code{NULL}.
#' \item \code{cost}: a copy of \code{cost}.
#' \item \code{Xcand}: a copy of \code{Xcand}.
#' \item \code{chosen}: list of chosen level and point.
#' \item \code{time}: a scalar of the time for the computation.
#' }
#' @importFrom plgp covar.sep
#' @importFrom lhs maximinLHS
#' @importFrom foreach foreach
#' @importFrom foreach %dopar%
#' @importFrom doParallel registerDoParallel
#' @importFrom doParallel stopImplicitCluster
#' @usage ALD_RNAmf(Xcand = NULL, fit, mc.sample = 100, cost = NULL,
#' optim = TRUE, parallel = FALSE, ncore = 1, trace=TRUE)
#' @export
#' @examples
#' \donttest{
#' library(lhs)
#' library(doParallel)
#' library(foreach)
#'
#' ### simulation costs ###
#' cost <- c(1, 3)
#'
#' ### 1-d Perdikaris function in Perdikaris, et al. (2017) ###
#' # low-fidelity function
#' f1 <- function(x) {
#' sin(8 * pi * x)
#' }
#'
#' # high-fidelity function
#' f2 <- function(x) {
#' (x - sqrt(2)) * (sin(8 * pi * x))^2
#' }
#'
#' ### training data ###
#' n1 <- 13
#' n2 <- 8
#'
#' ### fix seed to reproduce the result ###
#' set.seed(1)
#'
#' ### generate initial nested design ###
#' X <- NestedX(c(n1, n2), 1)
#' X1 <- X[[1]]
#' X2 <- X[[2]]
#'
#' ### n1 and n2 might be changed from NestedX ###
#' ### assign n1 and n2 again ###
#' n1 <- nrow(X1)
#' n2 <- nrow(X2)
#'
#' y1 <- f1(X1)
#' y2 <- f2(X2)
#'
#' ### n=100 uniform test data ###
#' x <- seq(0, 1, length.out = 100)
#'
#' ### fit an RNAmf ###
#' fit.RNAmf <- RNAmf(list(X1, X2), list(y1, y2), kernel = "sqex", constant=TRUE)
#'
#' ### predict ###
#' predy <- predict(fit.RNAmf, x)$mu
#' predsig2 <- predict(fit.RNAmf, x)$sig2
#'
#' ### active learning with optim=TRUE ###
#' ald.RNAmf.optim <- ALD_RNAmf(
#' Xcand = x, fit.RNAmf, cost = cost,
#' optim = TRUE, parallel = TRUE, ncore = 2
#' )
#' print(ald.RNAmf.optim$time) # computation time of optim=TRUE
#'
#' ### active learning with optim=FALSE ###
#' ald.RNAmf <- ALD_RNAmf(
#' Xcand = x, fit.RNAmf, cost = cost,
#' optim = FALSE, parallel = TRUE, ncore = 2
#' )
#' print(ald.RNAmf$time) # computation time of optim=FALSE
#'
#' ### visualize ALD ###
#' oldpar <- par(mfrow = c(1, 2))
#' plot(x, ald.RNAmf$ALD$ALD1,
#' type = "l", lty = 2,
#' xlab = "x", ylab = "ALD criterion at the low-fidelity level",
#' ylim = c(min(c(ald.RNAmf$ALD$ALD1, ald.RNAmf$ALD$ALD2)),
#' max(c(ald.RNAmf$ALD$ALD1, ald.RNAmf$ALD$ALD2)))
#' )
#' points(ald.RNAmf$chosen$Xnext,
#' ald.RNAmf$ALD$ALD1[which(x == drop(ald.RNAmf$chosen$Xnext))],
#' pch = 16, cex = 1, col = "red"
#' )
#' plot(x, ald.RNAmf$ALD$ALD2,
#' type = "l", lty = 2,
#' xlab = "x", ylab = "ALD criterion at the high-fidelity level",
#' ylim = c(min(c(ald.RNAmf$ALD$ALD1, ald.RNAmf$ALD$ALD2)),
#' max(c(ald.RNAmf$ALD$ALD1, ald.RNAmf$ALD$ALD2)))
#' )
#' par(oldpar)}
#'
ALD_RNAmf <- function(Xcand = NULL, fit, mc.sample = 100, cost = NULL, optim = TRUE, parallel = FALSE, ncore = 1, trace=TRUE) {
t0 <- proc.time()
### check the object ###
if (!inherits(fit, "RNAmf")) {
stop("The object is not of class \"RNAmf\" \n")
}
if (length(cost) != fit$level) stop("The length of cost should be the level of object")
### ALD ###
if (fit$level == 2) { # level 2
if (!is.null(cost) & cost[1] >= cost[2]) {
warning("If the cost for high-fidelity is cheaper, acquire the high-fidelity")
} else if (is.null(cost)) {
cost <- c(1, 0)
}
if (parallel) registerDoParallel(ncore)
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
constant <- fit$constant
kernel <- fit$kernel
g <- fit1$g
### Generate the candidate set ###
if (optim){ # optim = TRUE
Xcand <- randomLHS(5*ncol(fit1$X), ncol(fit1$X))
}else{ # optim = FALSE
if (is.null(Xcand)){
Xcand <- randomLHS(100*ncol(fit1$X), ncol(fit1$X))
}else if(is.null(dim(Xcand))){
Xcand <- matrix(Xcand, ncol = 1)
}
}
# if (ncol(Xcand) != dim(fit$fit1$X)[2]) stop("The dimension of candidate set should be equal to the dimension of the design")
### Calculate the contribution of GP emulator at each level ###
t1 <- proc.time()
if (parallel) {
optm.mat <- foreach(i = 1:nrow(Xcand), .combine = cbind) %dopar% {
newx <- matrix(Xcand[i, ], nrow = 1)
return(c(
-obj.ALD_V1_2level(newx, fit = fit),
-obj.ALD_V2_2level(newx, fit = fit)
))
}
} else {
optm.mat <- rbind(c(rep(0, nrow(Xcand))), c(rep(0, nrow(Xcand))))
for (i in 1:nrow(Xcand)) {
print(paste(i, nrow(Xcand), sep = "/"))
newx <- matrix(Xcand[i, ], nrow = 1)
optm.mat[1, i] <- -obj.ALD_V1_2level(newx, fit = fit)
optm.mat[2, i] <- -obj.ALD_V2_2level(newx, fit = fit)
}
}
t2 <-proc.time()
if(trace) cat("Calculating the contribution of GP emulator at each level:", (t2 - t1)[3], "seconds\n")
### Find the next point ###
if (optim) {
X.start <- matrix(Xcand[which.max(optm.mat[1, ]), ], nrow = 1)
optim.out <- optim(X.start, obj.ALD_V1_2level, method = "L-BFGS-B", lower = 0, upper = 1, fit = fit)
Xnext.1 <- optim.out$par
ALD.1 <- -optim.out$value
t3 <-proc.time()
if(trace) cat("Running optim for level 1:", (t3 - t2)[3], "seconds\n")
X.start <- matrix(Xcand[which.max(optm.mat[2, ]), ], nrow = 1)
optim.out <- optim(X.start, obj.ALD_V2_2level, method = "L-BFGS-B", lower = 0, upper = 1, fit = fit)
Xnext.2 <- optim.out$par
ALD.2 <- -optim.out$value
t4 <-proc.time()
if(trace) cat("Running optim for level 2:", (t4 - t3)[3], "seconds\n")
ALDvalue <- c(ALD.1, ALD.2) / c(cost[1], cost[1] + cost[2])
if (ALDvalue[2] > ALDvalue[1]) {
level <- 2
Xnext <- Xnext.2
} else {
level <- 1
Xnext <- Xnext.1
}
} else {
ALDvalue <- c(max(optm.mat[1, ]), max(optm.mat[2, ])) / c(cost[1], cost[1] + cost[2])
if (ALDvalue[2] > ALDvalue[1]) {
level <- 2
Xnext <- matrix(Xcand[which.max(optm.mat[2, ]), ], nrow = 1)
} else {
level <- 1
Xnext <- matrix(Xcand[which.max(optm.mat[1, ]), ], nrow = 1)
}
}
chosen <- list(
"level" = level, # next level
"Xnext" = Xnext
) # next point
ALD <- list(ALD1 = optm.mat[1, ] / cost[1], ALD2 = optm.mat[2, ] / (cost[1] + cost[2]))
} else if (fit$level == 3) { # level 3
if (!is.null(cost) & (cost[1] >= cost[2] | cost[2] >= cost[3])) {
warning("If the cost for high-fidelity is cheaper, acquire the high-fidelity")
} else if (is.null(cost)) {
cost <- c(1, 0, 0)
}
if (parallel) registerDoParallel(ncore)
fit1 <- fit$fits[[1]]
fit2 <- fit$fits[[2]]
fit3 <- fit$fits[[3]]
constant <- fit$constant
kernel <- fit$kernel
g <- fit1$g
### Generate the candidate set ###
if (optim){ # optim = TRUE
Xcand <- randomLHS(5*ncol(fit1$X), ncol(fit1$X))
}else{ # optim = FALSE
if (is.null(Xcand)){
Xcand <- randomLHS(100*ncol(fit1$X), ncol(fit1$X))
}else if(is.null(dim(Xcand))){
Xcand <- matrix(Xcand, ncol = 1)
}
}
# if (ncol(Xcand) != dim(fit$fit1$X)[2]) stop("The dimension of candidate set should be equal to the dimension of the design")
### Calculate the contribution of GP emulator at each level ###
t1 <- proc.time()
if (parallel) {
optm.mat <- foreach(i = 1:nrow(Xcand), .combine = cbind) %dopar% {
newx <- matrix(Xcand[i, ], nrow = 1)
return(c(
-obj.ALD_V1_3level(newx, fit = fit, mc.sample = mc.sample),
-obj.ALD_V2_3level(newx, fit = fit, mc.sample = mc.sample),
-obj.ALD_V3_3level(newx, fit = fit)
))
}
} else {
optm.mat <- rbind(c(rep(0, nrow(Xcand))), c(rep(0, nrow(Xcand))), c(rep(0, nrow(Xcand))))
for (i in 1:nrow(Xcand)) {
print(paste(i, nrow(Xcand), sep = "/"))
newx <- matrix(Xcand[i, ], nrow = 1)
optm.mat[1, i] <- -obj.ALD_V1_3level(newx, fit = fit, mc.sample = mc.sample)
optm.mat[2, i] <- -obj.ALD_V2_3level(newx, fit = fit, mc.sample = mc.sample)
optm.mat[3, i] <- -obj.ALD_V3_3level(newx, fit = fit)
}
}
t2 <- proc.time()
if(trace) cat("Calculating the contribution of GP emulator at each level:", (t2 - t1)[3], "seconds\n")
### Find the next point ###
if (optim) {
X.start <- matrix(Xcand[which.max(optm.mat[1, ]), ], nrow = 1)
optim.out <- optim(X.start, obj.ALD_V1_3level, method = "L-BFGS-B", lower = 0, upper = 1, fit = fit, mc.sample = mc.sample, parallel = parallel, ncore = ncore)
Xnext.1 <- optim.out$par
ALD.1 <- -optim.out$value
t3 <- proc.time()
if(trace) cat("Running optim for level 1:", (t3 - t2)[3], "seconds\n")
X.start <- matrix(Xcand[which.max(optm.mat[2, ]), ], nrow = 1)
optim.out <- optim(X.start, obj.ALD_V2_3level, method = "L-BFGS-B", lower = 0, upper = 1, fit = fit, mc.sample = mc.sample, parallel = parallel, ncore = ncore)
Xnext.2 <- optim.out$par
ALD.2 <- -optim.out$value
t4 <- proc.time()
if(trace) cat("Running optim for level 2:", (t4 - t3)[3], "seconds\n")
X.start <- matrix(Xcand[which.max(optm.mat[3, ]), ], nrow = 1)
optim.out <- optim(X.start, obj.ALD_V3_3level, method = "L-BFGS-B", lower = 0, upper = 1, fit = fit)
Xnext.3 <- optim.out$par
ALD.3 <- -optim.out$value
t5 <- proc.time()
if(trace) cat("Running optim for level 3:", (t5 - t4)[3], "seconds\n")
ALDvalue <- c(ALD.1, ALD.2, ALD.3) / c(cost[1], cost[1] + cost[2], cost[1] + cost[2] + cost[3])
if (ALDvalue[3] > ALDvalue[2]) {
level <- 3
Xnext <- Xnext.3
} else if (ALDvalue[2] > ALDvalue[1]) {
level <- 2
Xnext <- Xnext.2
} else {
level <- 1
Xnext <- Xnext.1
}
} else {
ALDvalue <- c(max(optm.mat[1, ]), max(optm.mat[2, ]), max(optm.mat[3, ])) / c(cost[1], cost[1] + cost[2], cost[1] + cost[2] + cost[3])
if (ALDvalue[3] > ALDvalue[2]) {
level <- 3
Xnext <- matrix(Xcand[which.max(optm.mat[3, ]), ], nrow = 1)
} else if (ALDvalue[2] > ALDvalue[1]) {
level <- 2
Xnext <- matrix(Xcand[which.max(optm.mat[2, ]), ], nrow = 1)
} else {
level <- 1
Xnext <- matrix(Xcand[which.max(optm.mat[1, ]), ], nrow = 1)
}
}
chosen <- list(
"level" = level, # next level
"Xnext" = Xnext
) # next point
ALD <- list(ALD1 = optm.mat[1, ] / cost[1], ALD2 = optm.mat[2, ] / (cost[1] + cost[2]), ALD3 = optm.mat[3, ] / (cost[1] + cost[2] + cost[3]))
} else {
stop("level is not 2")
}
if (parallel) stopImplicitCluster()
if (optim) ALD <- NULL
return(list(ALD = ALD, cost = cost, Xcand = Xcand, chosen = chosen, time = (proc.time() - t0)[3]))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.