add_missinglabels_mar | Throw out labels at random |
adjacency_knn | Calculate knn adjacency matrix |
BaseClassifier | Classifier used for enabling shared documenting of parameters |
c.CrossValidation | Merge result of cross-validation runs on single datasets into... |
clapply | Use mclapply conditional on not being in RStudio |
cov_ml | Biased (maximum likelihood) estimate of the covariance matrix |
CrossValidationSSL | Cross-validation in semi-supervised setting |
decisionvalues-methods | Decision values returned by a classifier for a set of objects |
df_to_matrices | Convert data.frame with missing labels to matrices |
diabetes | diabetes data for unit testing |
EMLeastSquaresClassifier | An Expectation Maximization like approach to Semi-Supervised... |
EMLinearDiscriminantClassifier | Semi-Supervised Linear Discriminant Analysis using... |
EMNearestMeanClassifier | Semi-Supervised Nearest Mean Classifier using Expectation... |
EntropyRegularizedLogisticRegression | Entropy Regularized Logistic Regression |
evaluation-measures | Performance measures used in classifier evaluation |
find_a_violated_label | Find a violated label |
gaussian_kernel | calculated the gaussian kernel matrix |
generate2ClassGaussian | Generate data from 2 Gaussian distributed classes |
generateABA | Generate data from 2 alternating classes |
generateCrescentMoon | Generate Crescent Moon dataset |
generateFourClusters | Generate Four Clusters dataset |
generateParallelPlanes | Generate Parallel planes |
generateSlicedCookie | Generate Sliced Cookie dataset |
generateSpirals | Generate Intersecting Spirals |
generateTwoCircles | Generate data from 2 circles |
geom_classifier | Plot RSSL classifier boundary (deprecated) |
geom_linearclassifier | Plot linear RSSL classifier boundary |
GRFClassifier | Label propagation using Gaussian Random Fields and Harmonic... |
harmonic_function | Direct R Translation of Xiaojin Zhu's Matlab code to... |
ICLeastSquaresClassifier | Implicitly Constrained Least Squares Classifier |
ICLinearDiscriminantClassifier | Implicitly Constrained Semi-supervised Linear Discriminant... |
KernelICLeastSquaresClassifier | Kernelized Implicitly Constrained Least Squares... |
KernelLeastSquaresClassifier | Kernelized Least Squares Classifier |
LaplacianKernelLeastSquaresClassifier | Laplacian Regularized Least Squares Classifier |
LaplacianSVM | Laplacian SVM classifier |
LearningCurveSSL | Compute Semi-Supervised Learning Curve |
LeastSquaresClassifier | Least Squares Classifier |
LinearDiscriminantClassifier | Linear Discriminant Classifier |
LinearSVM | Linear SVM Classifier |
LinearSVM-class | LinearSVM Class |
LinearTSVM | Linear CCCP Transductive SVM classifier |
line_coefficients-methods | Loss of a classifier or regression function |
localDescent | Local descent |
LogisticLossClassifier | Logistic Loss Classifier |
LogisticLossClassifier-class | LogisticLossClassifier |
LogisticRegression | (Regularized) Logistic Regression implementation |
LogisticRegressionFast | Logistic Regression implementation that uses R's glm |
logsumexp | Numerically more stable way to calculate log sum exp |
losslogsum-methods | LogsumLoss of a classifier or regression function |
loss-methods | Loss of a classifier or regression function |
losspart-methods | Loss of a classifier or regression function evaluated on... |
MajorityClassClassifier | Majority Class Classifier |
MCLinearDiscriminantClassifier | Moment Constrained Semi-supervised Linear Discriminant... |
MCNearestMeanClassifier | Moment Constrained Semi-supervised Nearest Mean Classifier |
MCPLDA | Maximum Contrastive Pessimistic Likelihood Estimation for... |
minimaxlda | Implements weighted likelihood estimation for LDA |
missing_labels | Access the true labels for the objects with missing labels... |
NearestMeanClassifier | Nearest Mean Classifier |
plot.CrossValidation | Plot CrossValidation object |
plot.LearningCurve | Plot LearningCurve object |
posterior-methods | Class Posteriors of a classifier |
predict-scaleMatrix-method | Predict for matrix scaling inspired by stdize from the PLS... |
PreProcessing | Preprocess the input to a classification function |
PreProcessingPredict | Preprocess the input for a new set of test objects for... |
print.CrossValidation | Print CrossValidation object |
print.LearningCurve | Print LearningCurve object |
projection_simplex | Project an n-dim vector y to the simplex Dn |
QuadraticDiscriminantClassifier | Quadratic Discriminant Classifier |
responsibilities-methods | Responsibilities assigned to the unlabeled objects |
rssl-formatting | Show RSSL classifier |
RSSL-package | RSSL: Implementations of Semi-Supervised Learning Approaches... |
rssl-predict | Predict using RSSL classifier |
S4VM | Safe Semi-supervised Support Vector Machine (S4VM) |
S4VM-class | LinearSVM Class |
sample_k_per_level | Sample k indices per levels from a factor |
scaleMatrix | Matrix centering and scaling |
SelfLearning | Self-Learning approach to Semi-supervised Learning |
solve_svm | SVM solve.QP implementation |
split_dataset_ssl | Create Train, Test and Unlabeled Set |
split_random | Randomly split dataset in multiple parts |
SSLDataFrameToMatrices | Convert data.frame to matrices for semi-supervised learners |
stat_classifier | Plot RSSL classifier boundaries |
stderror | Calculate the standard error of the mean from a vector of... |
summary.CrossValidation | Summary of Crossvalidation results |
svdinv | Inverse of a matrix using the singular value decomposition |
svdinvsqrtm | Taking the inverse of the square root of the matrix using the... |
svdsqrtm | Taking the square root of a matrix using the singular value... |
SVM | SVM Classifier |
svmlin | svmlin implementation by Sindhwani & Keerthi (2006) |
svmlin_example | Test data from the svmlin implementation |
svmproblem | Train SVM |
testdata | Example semi-supervised problem |
threshold | Refine the prediction to satisfy the balance constraint |
true_labels | Access the true labels when they are stored as an attribute... |
TSVM | Transductive SVM classifier using the convex concave... |
USMLeastSquaresClassifier | Updated Second Moment Least Squares Classifier |
USMLeastSquaresClassifier-class | USMLeastSquaresClassifier |
wdbc | wdbc data for unit testing |
WellSVM | WellSVM for Semi-supervised Learning |
wellsvm_direct | wellsvm implements the wellsvm algorithm as shown in [1]. |
WellSVM_SSL | Convex relaxation of S3VM by label generation |
WellSVM_supervised | A degenerated version of WellSVM where the labels are... |
wlda | Implements weighted likelihood estimation for LDA |
wlda_error | Measures the expected error of the LDA model defined by m, p,... |
wlda_loglik | Measures the expected log-likelihood of the LDA model defined... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.