SVM | R Documentation |
Support Vector Machine implementation using the quadprog
solver.
SVM(X, y, C = 1, kernel = NULL, scale = TRUE, intercept = FALSE,
x_center = TRUE, eps = 1e-09)
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
C |
numeric; Cost variable |
kernel |
kernlab::kernel to use |
scale |
logical; Should the features be normalized? (default: FALSE) |
intercept |
logical; Whether an intercept should be included |
x_center |
logical; Should the features be centered? |
eps |
numeric; Small value to ensure positive definiteness of the matrix in the QP formulation |
This implementation will typically be slower and use more memory than the svmlib implementation in the e1071 package. It is, however, useful for comparisons with the TSVM
implementation.
S4 object of type SVM
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.