R/triangle.R

Defines functions triangulate plot.triangulation plot.pslg read.pslg pslg check.na.nan

Documented in plot.pslg plot.triangulation pslg read.pslg triangulate

## Internal function to check for missing values
## It is necessary to check for NAs and NaNs, as the triangulate C
## code crashes if fed with them
check.na.nan <- function(x) {
  if (!is.null(x)) {
    if (anyNA(x)) {
      stop(paste("NA in", deparse(substitute(x))))
    }
    if (any(is.nan(x))) {
      stop(paste("NaN in", deparse(substitute(x))))
    }
  }
}

##' A Planar Straight Line Graph (PSLG) is a collection of vertices
##' and segments. Segments are edges whose endpoints are vertices in
##' the PSLG, and whose presence in any mesh generated from the PSLG
##' is enforced.
##'
##' @title Create a Planar Straight Line Graph object
##' @param P A 2-column matrix of x-y co-ordinates of vertices. There
##' is one row per vertex.
##' @param PB Vector of \emph{boundary markers} of vertices. For each
##' vertex this is 1 if the point should be on a boundary of any mesh
##' generated from the PSLG and 0 otherwise. There should be as many
##' elements in \code{VB} as there are vertices in \code{V}.
##' @param PA Matrix of \emph{attributes} which are typically
##' floating-point values of physical quantities (such as mass or
##' conductivity) associated with the nodes of a finite element
##' mesh. When triangulating using \code{\link{triangulate}} these are
##' copied unchanged to existing points in the output mesh and each
##' new Steiner point added to the mesh will have quantities assigned
##' to it by linear interpolation.
##' @param S A 2-column matrix of \emph{segments} in which each row is
##' a \emph{segment}. Segments are edges whose endpoints are vertices
##' in the PSLG, and whose presence in any mesh generated from the
##' PSLG is enforced. Each segment refers to the indices in \code{V}
##' of the endpoints of the segment. By default the segments are not
##' specified (\code{NA}), in which case the convex hull of the
##' vertices are taken to be the segments. Any vertices outside the
##' region enclosed by the segments are eaten away by the
##' triangulation algorithm. If the segments do not enclose a region
##' the whole triangulation may be eaten away.
##' @param SB Vector of boundary markers of segments. For each segment
##' this is 1 if the segment should be on a boundary of any mesh
##' generated from the PSLG and 0 otherwise. There should be as many
##' elements in \code{SB} as there are segments in \code{S}.
##' @param H 2-column matrix of \emph{holes},  with one hole per
##' row.Holes are specified by identifying a point inside each
##' hole. After the triangulation is formed, Triangle creates holes by
##' eating triangles, spreading out from each hole point until its
##' progress is blocked by PSLG segments; you must be careful to
##' enclose each hole in segments, or your whole triangulation might
##' be eaten away. If the two triangles abutting a segment are eaten,
##' the segment itself is also eaten. Do not place a hole directly on
##' a segment; if you do, Triangle will choose one side of the segment
##' arbitrarily.
##' @return An object containing the input of type \code{pslg} that
##' contains the information supplied in the inputs. This function
##' does some sanity checking of its inputs.
##' @author David Sterratt
##' @export
pslg <- function(P, PB=NA, PA=NA, S=NA, SB=NA, H=NA) {
  ## Make sure input is sane
  P  <- as.matrix(P)
  PB <- as.integer(PB)
  PA <- as.matrix(PA)
  S  <- as.matrix(S)
  SB <- as.integer(SB)
  H  <- as.matrix(H)

  check.na.nan(P)

  ## Deal with P
  if (ncol(P) != 2) {
    stop("Matrix of vertices P should have 2 columns")
  }

  ## Check that there are no duplicate rows in P
  if (anyDuplicated(as.data.frame(P))) {  ## faster for data.frame than matrix
    stop("Duplicated vertices in P.")
  }

  ## If attributes not specified, set them to a matrix with zero columns
  if (anyNA(PA)) {
    PA <- matrix(0, nrow(P), 0)
  }
  ## Make sure the size of the point attribute matrix is correct
  if (nrow(PA) != nrow(P)) {
    stop("Point attribute matrix PA does not have same number of rows the point matrix P")
  }

  ## If boundary vertices not specified, set them to 0
  if (any(is.na(PB))) {
    PB <- 0
  }
  PB <- rep(PB, length.out=nrow(P))

  ## Deal with S
  if (anyNA(S)) {
    S <- matrix(0, 0, 2)
  } else {
    if (ncol(S) != 2) {
    stop("Matrix of segments S should have 2 columns")
    }
  }

  ## If boundary segments not specified, set them to 0
  if (anyNA(SB)) {
    SB <- 0
  }
  SB <- rep(SB, length.out=nrow(S))

  ## If hole not specified, set it to empty matrix
  if (anyNA(H)) {
    H <- matrix(0, 0, 2)
  } else {
    if (ncol(H) != 2) {
      stop("Matrix of holes H should have 2 columns")
    }
  }

  ## Assemble components, setting storage mode of segments and markers
  ## to integer for the benefit of triangulate()
  storage.mode(P)  <- "double"
  storage.mode(PA) <- "double"
  storage.mode(PB) <- "integer"
  storage.mode(S)  <- "integer"
  storage.mode(SB) <- "integer"
  storage.mode(H)  <- "double"

  ret <- list(P=P, PA=PA, PB=PB,
              S=S, SB=SB, H=H)
  class(ret) <- "pslg"
  return(ret)
}

##' Read a Planar Straight Line Graph from a \code{.poly} file, as
##' used in Shewchuk's Triangle library
##' (\url{http://www.cs.cmu.edu/~quake/triangle.poly.html}).
##'
##' @title Read a Planar Straight Line Graph from file
##' @param file File name of \code{.poly} file to read.
##' @return \code{pslg} object. See \code{\link{pslg}}.
##' @author David Sterratt
##' @export
read.pslg <- function(file) {
  ##   * First line: <# of vertices> <dimension (must be 2)> <# of attributes> <# of boundary markers (0 or 1)>
  ##   * Following lines: <vertex #> <x> <y> [attributes] [boundary marker]
  ##   * One line: <# of segments> <# of boundary markers (0 or 1)>
  ##   * Following lines: <segment #> <endpoint> <endpoint> [boundary marker]
  ##   * One line: <# of holes>
  ##   * Following lines: <hole #> <x> <y>
  ##   * Optional line: <# of regional attributes and/or area constraints>
  ##   * Optional following lines: <region #> <x> <y> <attribute> <maximum area>

  dat <- scan(file, quiet=TRUE)

  ## Read in numbers of vertices, attributes and boundary points
  N.vert <- dat[1]
  N.dims <- dat[2]
  N.attr <- dat[3]
  N.boun <- dat[4]

  ## Read in vertices, attributes and vertex boundaries
  offset <- 4
  line.length <- 3 + N.attr + N.boun

  P <- matrix(NA, N.vert, 2)
  if (N.attr >= 1) {
    PA <- matrix(NA, N.vert, N.attr)
  }
  if (N.boun >= 1) {
    PB <- matrix(NA, N.vert, N.boun)
  } else {
    PB <- NA
  }

  for (i in (1:N.vert)) {
    P[i,] <- dat[offset+((i-1)*line.length)+(2:3)]
    if (N.attr >= 1) {
      PA[i,] <- dat[offset+((i-1)*line.length)+3+(1:N.attr)]
    }
    if (N.boun >= 1) {
      PB[i,] <- dat[offset+((i-1)*line.length)+3+N.attr+(1:N.boun)]
    }
  }

  ## Read in numbers of segments
  offset <- offset + line.length*N.vert
  N.seg <- dat[offset+1]
  N.boun <- dat[offset+2]

  ## Read in segments
  offset <- offset + 2
  line.length <- 3 + N.boun

  S <- matrix(NA, N.seg, 2)
  for (i in (1:N.seg)) {
    S[i,] <- dat[offset+((i-1)*line.length)+(2:3)]
  }

  ## Read in number of holes
  offset <- offset + line.length*N.seg
  N.hole <- dat[offset+1]

  ## Read in holes
  offset <- offset + 1
  H <- matrix(NA, N.hole, 2)
  for (i in (1:N.hole)) {
    H[i,] <- dat[offset+((i-1)*2)+(2:3)]
  }

  return(pslg(P=P, PA=PA, PB=PB, S=S, H=H))
}

##' Plot \code{\link{pslg}} object
##'
##' @title Plot pslg object
##' @method plot pslg
##' @param x \code{\link{pslg}} object
##' @param ... Arguments to be passed to methods.
##' @author David Sterratt
##' @export
plot.pslg <- function(x, ...) {
  with(x, {
    plot(P, xlab="", ylab="", xaxt="n", yaxt="n", bty="n", ...)
    segments(P[S[,1],1], P[S[,1],2],
             P[S[,2],1], P[S[,2],2], ...)
  })
}

##' Plots a triangulation object produced with \code{\link{triangulate}}
##'
##' @title Plot a triangulation object produced with triangulate
##' @method plot triangulation
##' @param x Triangulation object produced with \code{\link{triangulate}}.
##' @param ... Arguments to be passed to methods.
##' @author David Sterratt
##' @export
plot.triangulation <- function(x, ...) {
  with(x, {
    plot(P, xlab="", ylab="", xaxt="n", yaxt="n", bty="n", ...)
    segments(P[E[,1],1], P[E[,1],2],
             P[E[,2],1], P[E[,2],2], ...)
    segments(P[S[,1],1], P[S[,1],2],
             P[S[,2],1], P[S[,2],2], col="red", ...)
  })
}

##' Triangulate a planar straight line graph using the Triangle
##' library (\url{http://www.cs.cmu.edu/~quake/triangle.html}).  The
##' triangulation is a constrained conforming Delaunay triangulation
##' in which additional vertices, called Steiner points, can be
##' inserted into segments to improved the quality of the
##' triangulation.  To prevent the insertion of Steiner points on
##' boundary segments, specify \code{Y=TRUE}. If the maximum triangle
##' area \code{a} is specified, the area of each triangle is not
##' allowed to exceed this value. If the the minimum angle \code{q} is
##' specified, no triangle angle is allowed to be below this value.
##'
##' @title Triangulate a Planar Straight Line Graph
##' @param p Planar straight line graph object; see
##'   \code{\link{pslg}}.
##' @param a Maximum triangle area. If specified, triangles cannot be
##'   larger than this area.
##' @param q Minimum triangle angle in degrees.
##' @param Y If \code{TRUE} prohibits the insertion of Steiner points
##'   on the mesh boundary.
##' @param j If \code{TRUE} jettisons vertices that are not part of
##'   the final triangulation from the output.
##' @param D If \code{TRUE} produce a conforming Delaunay
##'   triangulation. This ensures that all the triangles in the mesh
##'   are truly Delaunay, and not merely constrained Delaunay. This
##'   option invokes Ruppert's original algorithm, which splits every
##'   subsegment whose diametral circle is encroached. It usually
##'   increases the number of vertices and triangles.
##' @param S Specifies the maximum number of added Steiner points. If
##'   set to \code{Inf}, there is no limit on the number of Steine
##'   points added - but this can lead to huge amounts of memory being
##'   allocated.
##' @param V Verbosity level. Specify higher values for more detailed
##'   information about what the Triangle library is doing.
##' @param Q If \code{TRUE} suppresses all explanation of what the
##'   Triangle library is doing, unless an error occurs.
##' @return A object with class \code{triangulation}. This contains
##'   the information in the same format as the PSLG, \code{p}, with
##'   an updated list of points \code{P} and point attributes
##'   \code{PA}, along with the following variables:
##'
##' \item{\code{T}}{Triangulation specified as 3 column matrix
##' in which each row contains indices in \code{P} of vertices.}
##' \item{\code{E}}{Set of edges in the triangulation.}
##' \item{\code{EB}}{Boundary markers of edges. For each edge this is 1 if
##' the point is on a boundary of the triangulation and 0
##' otherwise.}
##' \item{\code{VP}}{The points of the Voronoi tessalation as a 2-column matrix}
##' \item{\code{VE}}{Set of edges of the Voronoi tessalation. An index of -1 indicates an infinite ray.}
##' \item{\code{VN}}{Directions of infinite rays of Voroni tessalation as a 2-column matrix with the same number of rows as \code{VP}.}
##' \item{\code{VA}}{Matrix of \emph{attributes} associated with the
##' polygons of the Voronoi tessalation.}
##' @examples
##' ## Create an object with a concavity
##' p <- pslg(P=rbind(c(0, 0), c(0, 1), c(0.5, 0.5), c(1, 1), c(1, 0)),
##'           S=rbind(c(1, 2), c(2, 3), c(3, 4), c(4, 5), c(5, 1)))
##' ## Plot it
##' plot(p)
##' ## Triangulate it
##' tp <- triangulate(p)
##' plot(tp)
##' ## Triangulate it subject to minimum area constraint
##' tp <- triangulate(p, a=0.01)
##' plot(tp)
##' ## Load a data set containing a hole
##' A <- read.pslg(file.path(system.file(package = "RTriangle"), "extdata", "A.poly"))
##' plot(A)
##' ## Produce a constrained Delaunay triangulation of the PSLG
##' tA <- triangulate(A, Y=TRUE)
##' plot(tA)
##' ## Produce a conforming Delaunay triangulation of the PSLG
##' tA <- triangulate(A, D=TRUE)
##' plot(tA)
##' ## Triangulate the PSLG with triangles in which no angle
##' ## is smaller than 20 degrees
##' tA <- triangulate(A, q=20)
##' plot(tA)
##' ## Triangulate the PSLG with triangles in which no triangle has
##' ## area greater than 0.001
##' tA <- triangulate(A, a=0.001)
##' plot(tA)
##' @author David Sterratt
##' @export
##' @useDynLib RTriangle
triangulate <- function(p, a=NULL, q=NULL, Y=FALSE, j=FALSE,
                        D=FALSE, S=10000,
                        V=0, Q=TRUE) {

  check.na.nan(a)
  check.na.nan(q)
  check.na.nan(V)
  check.na.nan(S)
  if (is.infinite(S) | S < 0) {
    SS <- -1
  } else {
    SS <- S
  }

  ## Call the main routine
  out <- .Call("R_triangulate",
               t(p$P),
               p$PB,
               p$PA,
               t(p$S),
               p$SB,
               t(p$H),
               a,
               q,
               Y,
               as.integer(SS),
               j,
               D,
               as.integer(V),
               Q,
               PACKAGE="RTriangle")
  names(out) <- c("P", "PB", "PA", "T", "S", "SB", "E", "EB", "VP", "VE", "VN", "VA", "NB")
  class(out) <- "triangulation"
  return(out)
}

# LocalWords:  param Sterratt PSLG emph pslg NAs NaNs NaN anyDuplicated nrow
# LocalWords:  ret Shewchuk's dat vert attr boun seg xlab ylab xaxt yaxt bty

Try the RTriangle package in your browser

Any scripts or data that you put into this service are public.

RTriangle documentation built on Sept. 11, 2024, 6:54 p.m.