Nothing
rare_phylo <- function(comm, tree = NULL, method = c("faith", "barker", "Ia", "hill", "tsallis", "renyi", "fun_div"), exp = 0, resampling = 99, fun_div = NULL, args = NULL, verbose = FALSE) {
method <- method[1]
if(!method %in% c("faith", "barker", "Ia", "tsallis", "hill", "renyi", "fun_div")) stop("Unavailable method")
if(is.null(colnames(comm))) stop("comm must have names for columns")
if (!inherits(comm, "matrix") && !inherits(comm, "data.frame")) stop("Non convenient comm")
if (any(comm < 0)) stop("Negative value in comm")
if(suppressWarnings(any(rowSums(comm)) == 0)) stop("Empty row")
if(suppressWarnings(any(colSums(comm)) == 0)) {
v<-apply(comm, 2, function(col) any(col != 0 ))
comm<-comm[, v]
}
if(is.null(tree) && method !='fun_div') stop("tree must have a value")
if(!is.null(tree)) {
if(!inherits(tree, "phylo") && !inherits(tree, "phylo4")) stop("tree must be of class phylo or phylo4")
if(inherits(tree, "phylo4")) suppressWarnings(tree<-as(tree, "phylo"))
if(any(!colnames(comm) %in% tree$tip.label)) stop("comm contains tip names that are not available in tree")
if(is.null(tree$edge.length)) stop("edge lengths are required for tree")
}
if(method == 'faith') {
r_fin <- array(dim = c(resampling, nrow(comm)))
for(i in 1:resampling) {
v <- sample(1:nrow(comm), nrow(comm))
x <- comm[v,]
x <- apply(x, 2, cumsum)
sub_tree <- apply(x, 1, function(x) drop.tip(tree, which(!(tree$tip.label %in% colnames(comm)[x > 0]))))
r_fin[i,] <- unlist(lapply(sub_tree, function(x) sum(x$edge.length)))
}
rare <- colMeans(r_fin)
}
else if(method == 'barker') {
comm <- sweep(comm, 2, colSums(comm), "/")
r_fin <- array(dim = c(resampling, nrow(comm)))
get.leaves <- function(x, st){
leaves.node <- tips(st, x[2])
}
for(i in 1:resampling) {
v <- sample(1:nrow(comm), nrow(comm))
x <- comm[v,]
x <- apply(x, 2, cumsum)
sub_tree <- apply(x, 1, function(x) drop.tip(tree, which(!(tree$tip.label %in% colnames(comm)[x > 0]))))
lv <- lapply(sub_tree, function(y) apply(y$edge, 1, function(z) get.leaves(z,y)))
for(j in 1:nrow(x)) {
v1 <- x[j,]
rel <- unlist(lapply(lv[[j]], function(l) mean(v1[l])))
r_fin[i,j] <- nrow(sub_tree[[j]]$edge) * ((sum(sub_tree[[j]]$edge.length * rel)) / sum(rel))
}
}
rare <- colMeans(r_fin)
}
else if(method == 'Ia') {
r_fin <- array(dim = c(resampling, nrow(comm)))
for(i in 1:resampling) {
v <- sample(1:nrow(comm),nrow(comm))
x <- comm[v,]
x <- apply(x, 2, cumsum)
r_fin[i,] <- pIa(tree, x, exponent = exp)[[1]]
}
rare <- colMeans(r_fin)
}
else if(method == 'hill' || method == 'tsallis' || method == 'renyi') {
r_fin <- array(dim = c(resampling, nrow(comm)))
for(i in 1:resampling) {
v <- sample(1:nrow(comm), nrow(comm))
x <- comm[v,]
x <- apply(x, 2, cumsum)
r_fin[i,] <- evodivparam(tree, x, method = method, q = exp)
}
rare <- colMeans(r_fin)
}
else if(method == 'fun_div') {
if(!inherits(fun_div, 'character')) stop("fun_div must be a character")
if(!exists(fun_div)) stop("the function doesn't exist")
f <- match.fun(fun_div)
arg <- as.list(args(f))
v <- names(arg)
if(verbose) {
v[length(v)] <- 'stop'
ch <- 1
i <- 2
l <- list(comm)
cat('Wich argument is the community matrix?')
cat(paste(1:(length(v)-1), '-', v[-length(v)]))
ch <- readline("Argument number: ")
ch <- as.numeric(ch)
if(ch %in% 1:length(v) && !v[ch] %in% c('stop')) n <- v[ch] else stop(paste(ch, "is not a possible choice"))
cat('Which arguments do you want to set?')
while(!v[ch] %in% c('stop')) {
cat(paste(1:length(v), '-', v))
ch <- readline("Argument number: ")
ch <- as.numeric(ch)
if(v[ch] == 'stop') break()
if(ch %in% 1:length(v) && !v[ch] %in% c('stop')) {
n[i] <- v[ch]
v[ch] <- readline(paste(v[ch], ' = '))
}
if(exists(v[ch]) && v[ch] != n[i]) {
l[[i]] <- get(v[ch])
i <- i+1
}
else if(v[ch] %in% c('FALSE', 'TRUE', 'T', 'F') && v[ch] != n[i]) {
l[[i]] <- as.logical(v[ch])
i <- i+1
}
else if(!is.na(as.numeric(v[ch])) && v[ch] != n[i]) {
l[[i]] <- as.numeric(v[ch])
i <- i+1
}
else if(grepl('^c\\(.+\\)$', v[ch]) && v[ch] != n[i]) {
v[ch] <- gsub('c\\(', '', v[ch])
v[ch] <- gsub('\\)', '', v[ch])
v[ch] <- gsub('\'', '', v[ch])
st <- strsplit(v[ch], ',')
if(all(suppressWarnings(!is.na(sapply(st, as.numeric))))) {
st <- unlist(lapply(st, as.numeric))
l[[i]] <- st
i <- i+1
}
else if(all(st %in% c('FALSE', 'TRUE', 'T', 'F'))) {
st <- unlist(lapply(st, as.logical))
l[[i]] <- st
i <- i+1
}
else {
l[[i]] <- st
i <- i+1
}
}
else if(v[ch] != n[i]) {
l[[i]] <- v[ch]
i <- i+1
}
}
names(l) <- n
r_fin <- array(dim = c(resampling, nrow(comm)))
for(i in 1:resampling) {
v <- sample(1:nrow(comm), nrow(comm))
x <- comm[v,]
x <- apply(x, 2, cumsum)
l[[1]] <- x
r_fin[i,] <- do.call(f, l)
}
rare <- colMeans(r_fin)
}
else {
if(!all(names(args) %in% v)) stop("The arguments must be the ones specified by the function you chose")
ind <- match(NA, unlist(args))
ind <- match(names(unlist(args)[ind]), names(args))
r_fin <-array(dim = c(resampling, nrow(comm)))
for(i in 1:resampling) {
v <- sample(1:nrow(comm), nrow(comm))
x <- comm[v,]
x <- as.data.frame(lapply(x,cumsum))
args[[ind]] <- x
r_fin[i,] <- do.call(f,args)
}
rare <- colMeans(r_fin)
}
}
IC_plus <- rare + (1.96 * (sd(r_fin) / sqrt(resampling)))
IC_neg <- rare - (1.96 * (sd(r_fin) / sqrt(resampling)))
df <- data.frame(rare, IC_plus, IC_neg)
colnames(df) <- c('Rarefaction', 'IC_plus', 'IC_neg')
return(df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.