Nothing
#' @title Half-normal likelihood function for distance analyses
#'
#' @description This function computes the likelihood contributions for
#' sighting distances, scaled appropriately, for use as a
#' distance likelihood.
#'
#' @param a A vector of likelihood parameter values. Length and
#' meaning depend on \code{series} and \code{expansions}. If no expansion
#' terms were called for (i.e., \code{expansions = 0}), the distance
#' likelihoods contain one or two canonical parameters (see Details).
#' If one or more expansions are called for, coefficients for the
#' expansion terms follow coefficients for the canonical parameters.
#' i.e., if \code{p} is the number of canonical parameters, coefficients
#' for the expansion terms are \code{a[(p+1):length(a)]}.
#'
#' @param dist A numeric vector containing the observed distances.
#'
#' @param covars Data frame containing values of covariates at
#' each observation in \code{dist}.
#'
#' @param w.lo Scalar value of the lowest observable distance.
#' This is the \emph{left truncation} of sighting distances
#' in \code{dist}. Same units as \code{dist}. Values less than
#' \code{w.lo} are allowed in \code{dist}, but are ignored and
#' their contribution to the likelihood is set to \code{NA} in the output.
#'
#' @param w.hi Scalar value of the largest observable distance.
#' This is the \emph{right truncation} of sighting distances
#' in \code{dist}. Same units as \code{dist}. Values greater
#' than \code{w.hi} are allowed in \code{dist}, but are ignored
#' and their contribution to the likelihood is set to \code{NA}
#' in the output.
#'
#' @param series A string specifying the type of expansion to use.
#' Currently, valid values are 'simple', 'hermite', and 'cosine'; but, see
#' \code{\link{dfuncEstim}} about defining other series.
#'
#' @param expansions A scalar specifying the number of terms
#' in \code{series}. Depending on the series, this could be 0 through 5.
#' The default of 0 equates to no expansion terms of any type.
#'
#' @param scale Logical scalar indicating whether or not to
#' scale the likelihood so it integrates to 1. This parameter is
#' used to stop recursion in other functions. If \code{scale}
#' equals TRUE, a numerical integration routine
#' (\code{\link{integration.constant}}) is called, which in turn
#' calls this likelihood function again with \code{scale} = FALSE.
#' Thus, this routine knows when its values are being used to compute
#' the likelihood and when its value is being used to compute the
#' constant of integration. All user defined likelihoods must have
#' and use this parameter.
#'
#' @param pointSurvey Boolean. TRUE if distances in \code{dist} are
#' radial from point
#' transects, FALSE if distances are perpendicular off-transect distances.
#'
#' @details The half-normal likelihood is
#' \deqn{f(x|a) = \exp(-x^2 / (2*a^2))}{f(x|a) = exp(-x^2 / (2*a^2))}
#' where \eqn{a} is the parameter to be estimated.
#' Some half-normal distance functions in the literature
#' do not use a "2" in the
#' denominator of the exponent. \code{Rdistance} uses a
#' "2" in the denominator of the exponent to make quantiles of this
#' function agree with
#' the standard normal which means \emph{a} can be interpreted as a
#' normal standard error. e.g., approximately 95\% of all observations
#' will occur between 0 and 2\emph{a}.
#'
#' \bold{Expansion Terms}: If \code{expansions} = k (k > 0), the expansion function specified by \code{series} is called (see for example
#' \code{\link{cosine.expansion}}). Assuming \eqn{h_{ij}(x)}{h_ij(x)} is the \eqn{j^{th}}{j-th} expansion term for the \eqn{i^{th}}{i-th} distance and that
#' \eqn{c_1, c_2, \dots, c_k}{c(1), c(2), ..., c(k)}are (estimated) coefficients for the expansion terms, the likelihood contribution for the \eqn{i^{th}}{i-th}
#' distance is, \deqn{f(x|a,b,c_1,c_2,\dots,c_k) = f(x|a,b)(1 + \sum_{j=1}^{k} c_j h_{ij}(x)).}
#' {f(x|a,b,c_1,c_2,...,c_k) = f(x|a,b)(1 + c(1) h_i1(x) + c(2) h_i2(x) + ... + c(k) h_ik(x)). }
#'
#' @return A numeric vector the same length and order as \code{dist} containing the
#' likelihood contribution for corresponding distances in \code{dist}.
#' Assuming \code{L} is the returned vector from one of these functions,
#' the negative log likelihood of all the data is \code{-sum(log(L), na.rm=T)}.
#' Note that the returned likelihood value for distances less
#' than \code{w.lo} or greater than \code{w.hi} is \code{NA},
#' hence \code{na.rm=TRUE} in the sum.
#' If \code{scale} = TRUE, the integral of the likelihood from
#' \code{w.lo} to \code{w.hi} is 1.0. If \code{scale} = FALSE,
#' the integral of the likelihood is something else.
#' Values are always greater than or equal to zero.
#'
#' @seealso \code{\link{dfuncEstim}},
#' \code{\link{hazrate.like}},
#' \code{\link{uniform.like}},
#' \code{\link{negexp.like}},
#' \code{\link{Gamma.like}}
#'
#' @examples \dontrun{
#' set.seed(238642)
#' x <- seq(0, 100, length=100)
#'
#' # Plots showing effects of changes in parameter Sigma
#' plot(x, halfnorm.like(20, x), type="l", col="red")
#' plot(x, halfnorm.like(40, x), type="l", col="blue")
#'
#' # Estimate 'halfnorm' distance function
#' a <- 5
#' x <- rnorm(1000, mean=0, sd=a)
#' x <- x[x >= 0]
#' dfunc <- dfuncEstim(x~1, likelihood="halfnorm")
#' plot(dfunc)
#'
#' # evaluate the log Likelihood
#' L <- halfnorm.like(dfunc$parameters, dfunc$detections$dist, covars=dfunc$covars,
#' w.lo=dfunc$w.lo, w.hi=dfunc$w.hi,
#' series=dfunc$series, expansions=dfunc$expansions,
#' scale=TRUE)
#' -sum(log(L), na.rm=TRUE) # the negative log likelihood
#' }
#' @keywords models
#' @export
halfnorm.like <- function(a,
dist,
covars = NULL,
w.lo = units::set_units(0,"m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE){
# rule is: parameter 'a' never has units. None of its components do, even though they could (e.g., sigma = a[1])
# upon entry: 'dist', 'w.lo', and 'w.hi' all have units
dist[ (dist < w.lo) | (dist > w.hi) ] <- NA
if(!is.null(covars)){
q <- ncol(covars)
beta <- a[1:q]
s <- drop( covars %*% matrix(beta,ncol=1) )
sigma <- exp(s)
} else {
sigma <- a[1]
}
key <- -(units::drop_units(dist*dist))/(2*sigma*sigma)
# Above is safe. Units of sigma will scale to units of dist. 'key' is unit-less
key <- exp(key)
# If there are expansion terms
if(expansions > 0){
nexp <- expansions
w <- w.hi - w.lo # 'w' has units here, we want this so conversions below happen
if (series=="cosine"){
dscl <- units::drop_units(dist/w) # unit conversion here; drop units is safe
exp.term <- cosine.expansion( dscl, nexp )
} else if (series=="hermite"){
dscl <- units::drop_units(dist/sigma) # unit conversion here; drop units is safe
exp.term <- hermite.expansion( dscl, nexp )
} else if (series == "simple") {
dscl <- units::drop_units(dist/w) # unit conversion here; drop units is safe
exp.term <- simple.expansion( dscl, nexp )
} else {
stop( paste( "Unknown expansion series", series ))
}
expCoeffs <- a[(length(a)-(nexp-1)):(length(a))]
key <- key * (1 + c(exp.term %*% expCoeffs))
# without monotonicity restraints, function can go negative,
# especially in a gap between datapoints. This makes no sense in distance
# sampling and screws up the convergence.
key[ which(key < 0) ] <- 0
}
if( scale ){
key = key / integration.constant(dist=dist,
density=halfnorm.like,
a=a,
covars = covars,
w.lo=w.lo,
w.hi=w.hi,
series=series,
expansions=expansions,
pointSurvey = pointSurvey) # scales underlying density to integrate to 1.0
}
c(key)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.