Nothing
#' This function performs a number of gof tests for continuous data and finds the adjusted p value
#' @param x data set
#' @param pnull cdf under the null hypothesis
#' @param rnull routine to generate data under the null hypothesis
#' @param w (Optional) function to calculate weights, returns -99 if no weights
#' @param phat =function(x) -99, function to estimate parameters from the data, or -99 if no parameters aare estimated
#' @param TS user supplied function to find test statistics, if any
#' @param TSextra =NA, list passed to TS, if desired
#' @param nbins =c(50, 10) number of bins for chi-square tests
#' @param rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed
#' @param Range =c(-Inf, Inf) limits of possible observations, if any, for chi-square tests
#' @param B =c(5000,1000) number of simulation runs for p values and for p value distribution
#' @param minexpcount =5 minimal expected bin count required
#' @param ChiUsePhat =TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.
#' @param doMethods Methods to include in tests
#' @return None
gof_test_cont_adj=function(x, pnull, rnull, w=function(x) -99, phat=function(x) 0,
TS, TSextra=NA, nbins=c(50,10), rate=0, Range=c(-Inf,Inf),
B=c(5000, 1000), minexpcount=5, ChiUsePhat=TRUE,
doMethods=c("W", "ZC", "AD", "ES-s-P")) {
if(length(B)==1) B=c(B, B)
# Are weights present?
WithWeights = TRUE
if(length(formals(w))==1 & w(x[1])==-99) WithWeights = FALSE
if(any(is.na(TSextra))) TSextra = list(p=phat(x))
else TSextra = c(TSextra, p=phat)
Noqnull = FALSE
if( !("qnull" %in% names(TSextra)) ) {
Noqnull = TRUE
qnull=function(x, p=0) rep(-99,length(x))
TSextra = c(TSextra, qnull=qnull)
}
else qnull = TSextra$qnull
if(missing(TS)) {
nn = 1:length(x)/length(x)
if(!WithWeights) { #data is not weighted
typeTS=1
TS = TS_cont
TS_data = TS(x, nn, 0, function(x) abs(x)/max(x))
}
else {
typeTS=2
TS = TSw_cont
TS_data = TS(x, nn, w(x))
doMethods = names(TS_data)
}
}
else {
if(length(formals(TS))==2) {
typeTS=3
TS_data = TS(x, (1:length(x))/(length(x)+1))
}
if(length(formals(TS))==3) {
typeTS=4
TS_data = TS(x, (1:length(x))/(length(x)+1), TSextra)
}
if(length(formals(TS))>3) {
message("TS should have either 2 or 3 arguments")
return(NULL)
}
if(is.null(names(TS_data))) {
message("result of TS has to be a named vector")
return(NULL)
}
}
p=phat(x)
psim=p
NoEstimation=FALSE
if(length(formals(pnull))==1) NoEstimation=TRUE
if(NoEstimation) {
Fx=pnull(x)
if(WithWeights) wx=w(x)
}
else {
Fx=pnull(x,p)
if(WithWeights) wx=w(x,p)
}
if(typeTS==1) TS_data=TS(x, Fx, p, qnull);
if(typeTS==2) TS_data=TS(x, Fx, wx);
if(typeTS==3) TS_data=TS(x, Fx);
if(typeTS==4) TS_data=TS(x, Fx, TSextra);
if(typeTS>2) doMethods=names(TS_data)
num_tests=length(TS_data)
A=matrix(0, B[1], num_tests)
for(i in 1:B[1]) {
if(NoEstimation) xsim=rnull()
else {xsim=rnull(p);psim=phat(xsim)}
if(NoEstimation) {
Fx=pnull(xsim)
if(WithWeights) wx=w(xsim)
}
else {
Fx=pnull(xsim, psim)
if(WithWeights) wx=w(xsim, psim)
}
if(typeTS==1) TS_sim=TS(xsim, Fx, psim, qnull);
if(typeTS==2) TS_sim=TS(xsim, Fx, wx);
if(typeTS==3) TS_sim=TS(xsim, Fx);
if(typeTS==4) TS_sim=TS(xsim, Fx, TSextra);
A[i, ]=TS_sim
}
if(typeTS<=2) {
pvals=matrix(0, B[2]+1, num_tests+8)
colnames(pvals)=c(names(TS_data),
"ES-l-P", "ES-s-P", "EP-l-P", "EP-s-P",
"ES-l-L", "ES-s-L", "EP-l-L", "EP-s-L")
}
else {
pvals=matrix(0, B[2]+1, num_tests)
colnames(pvals)=names(TS_data)
}
for(i in 1:(B[2]+1)) {
if(i==1) {xsim=x;psim=p}
else {
if(NoEstimation) xsim=rnull()
else {xsim=rnull(p);psim=phat(xsim)}
}
if(NoEstimation) {
Fx=pnull(xsim)
if(typeTS==2) wx=w(xsim)
}
else {
Fx=pnull(xsim, psim)
if(typeTS==2) wx=w(xsim, psim)
}
if(typeTS==1) TS_sim=TS(xsim, Fx, psim, qnull);
if(typeTS==2) TS_sim=TS(xsim, Fx, wx);
if(typeTS==3) TS_sim=TS(xsim, Fx);
if(typeTS==4) TS_sim=TS(xsim, Fx, TSextra);
for(j in 1:num_tests)
pvals[i, j]=pvals[i, j]+sum(TS_sim[j]<A[,j])/B[1]
if(typeTS<=2) {
Range[1]=ifelse(is.infinite(Range[1]),-99999, Range[1])
Range[2]=ifelse(is.infinite(Range[2]),99999, Range[2])
pvals[i, num_tests+1:8]=round(chi_test_cont(xsim, pnull, w=w,
phat=phat, qnull=ifelse(Noqnull, NA, qnull), rate=rate, nbins=nbins,
Range=Range, minexpcount=minexpcount,
ChiUsePhat=ChiUsePhat)[,2],4)
}
}
pvals=pvals[, doMethods, drop=FALSE]
minp_x=min(pvals[1, ])
minp_sim=apply(pvals[-1, ,drop=FALSE], 1, min)
z=seq(0, 1, length=250)
y=z
for(i in 1:250) y[i]=sum(minp_sim<=z[i])/B[2]
I=c(1:250)[z>minp_x][1]-1
slope=(y[I+1]-y[I])/(z[I+1]-z[I])
minp_adj=round(y[I]+slope*(minp_x-z[I]),4)
message("p values of individual tests:")
for(i in 1:ncol(pvals)) message(paste(doMethods[i],": ", pvals[1,i]))
message(paste0("adjusted p value of combined tests: ", minp_adj))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.