Nothing
## ----setup, include = FALSE---------------------------------------------------
is_check <- ("CheckExEnv" %in% search()) ||
any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) ||
!file.exists("../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS")
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = !is_check,
dev = "png")
if(.Platform$OS.type == "windows"){
knitr::opts_chunk$set(dev.args = list(type = "cairo"))
}
## ----include = FALSE----------------------------------------------------------
library(RoBMA)
zfit_reg <- readRDS(file = "../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS")
fit_reg <- zfit_reg
class(fit_reg) <- class(fit_reg)[!class(fit_reg) %in% "zcurve_RoBMA"]
## ----include = FALSE, eval = FALSE--------------------------------------------
# # R package version updating
# library(RoBMA)
# data("Havrankova2025", package = "RoBMA")
#
# # Prior scaling
# fit_fe <- metafor::rma(yi = y, sei = se, data = Havrankova2025, method = "FE")
# unti_scale <- fit_fe$se * sqrt(sum(Havrankova2025$N))
# prior_scale <- unti_scale * 0.5
#
# df_reg <- data.frame(
# y = Havrankova2025$y,
# se = Havrankova2025$se,
# facing_customer = Havrankova2025$facing_customer,
# study_id = Havrankova2025$study_id
# )
#
# fit_reg <- RoBMA.reg(
# ~ facing_customer,
# study_ids = df_reg$study_id,
# data = df_reg,
# rescale_priors = prior_scale,
# prior_scale = "none", transformation = "none",
# algorithm = "ss", sample = 20000, burnin = 10000, adapt = 10000,
# thin = 5, parallel = TRUE, autofit = FALSE, seed = 1)
# )
#
# zfit_reg <- as_zcurve(fit_reg)
# saveRDS(zfit_reg, file = "../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS", compress = "xz")
## -----------------------------------------------------------------------------
library(RoBMA)
data("Havrankova2025", package = "RoBMA")
fit_fe <- metafor::rma(yi = y, sei = se, data = Havrankova2025, method = "FE")
unti_scale <- fit_fe$se * sqrt(sum(Havrankova2025$N))
prior_scale <- unti_scale * 0.5
## ----eval = FALSE-------------------------------------------------------------
# df_reg <- data.frame(
# y = Havrankova2025$y,
# se = Havrankova2025$se,
# facing_customer = Havrankova2025$facing_customer,
# study_id = Havrankova2025$study_id
# )
#
# fit_reg <- RoBMA.reg(
# ~ facing_customer,
# study_ids = df_reg$study_id,
# data = df_reg,
# rescale_priors = prior_scale,
# prior_scale = "none", transformation = "none",
# algorithm = "ss", sample = 20000, burnin = 10000, adapt = 10000,
# thin = 5, parallel = TRUE, autofit = FALSE, seed = 1)
# )
## -----------------------------------------------------------------------------
summary(fit_reg)
## -----------------------------------------------------------------------------
marginal_summary(fit_reg)
## ----eval = FALSE-------------------------------------------------------------
# zfit_reg <- as_zcurve(fit_reg)
## ----fig.width = 6, fig.height = 4--------------------------------------------
par(mar = c(4,4,0,0))
plot(zfit_reg, by.hist = 0.25, plot_extrapolation = FALSE, from = -4, to = 8)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.