View source: R/Discretization.R
D.global.discernibility.heuristic.RST | R Documentation |
It is a function used for computing globally semi-optimal cuts using the maximum discernibility heuristic.
D.global.discernibility.heuristic.RST(
decision.table,
maxNOfCuts = 2 * ncol(decision.table),
attrSampleSize = ncol(decision.table) - 1,
cutCandidatesList = NULL,
discFunction = global.discernibility,
...
)
decision.table |
an object inheriting from the |
maxNOfCuts |
a positive integer indicating the maximum number of allowed cuts. |
attrSampleSize |
an integer between 1 and the number of conditional attributes (the default). It indicates the attribute sample size for the Monte Carlo selection of candidating cuts. |
cutCandidatesList |
an optional list containing candidates for optimal cut values. By default the candidating cuts are determined automatically. |
discFunction |
a function used for computation of cuts. Currently only one implementation of maximu discernibility heuristic
is available (the default). However, this parameter can be used to integrate custom implementations of
discretization functions with the |
... |
additional parameters to the |
A complete description of the implemented algorithm can be found in (Nguyen, 2001).
It should be noted that the output of this function is an object of a class "Discretization"
which contains the cut values.
The function SF.applyDecTable
has to be used in order to generate the new (discretized) decision table.
An object of a class "Discretization"
which stores cuts for each conditional attribute.
See D.discretization.RST
.
Andrzej Janusz
S. H. Nguyen, "On Efficient Handling of Continuous Attributes in Large Data Bases", Fundamenta Informaticae, vol. 48, p. 61 - 81 (2001).
Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, and Jakub Wroblewski, "Rough Set Algorithms in Classification Problem", Chapter 2 In: L. Polkowski, S. Tsumoto and T.Y. Lin (eds.): Rough Set Methods and Applications Physica-Verlag, Heidelberg, New York, p. 49 - 88 ( 2000).
D.discretize.quantiles.RST
, D.discretize.equal.intervals.RST
,
D.local.discernibility.heuristic.RST
and SF.applyDecTable
.
A wrapper function for all available discretization methods: D.discretization.RST
#################################################################
## Example: Determine cut values and generate new decision table
#################################################################
data(RoughSetData)
wine.data <- RoughSetData$wine.dt
cut.values <- D.global.discernibility.heuristic.RST(wine.data)
## generate a new decision table:
wine.discretized <- SF.applyDecTable(wine.data, cut.values)
dim(wine.discretized)
lapply(wine.discretized, unique)
## remove attributes with only one possible value:
to.rm.idx <- which(sapply(lapply(wine.discretized, unique), function(x) length(x) == 1))
to.rm.idx
wine.discretized.reduced <- wine.discretized[-to.rm.idx]
dim(wine.discretized.reduced)
## check whether the attributes in the reduced data are a super-reduct of the original data:
colnames(wine.discretized.reduced)
class.idx <- which(colnames(wine.discretized.reduced) == "class")
sum(duplicated(wine.discretized.reduced)) == sum(duplicated(wine.discretized.reduced[-class.idx]))
## yes it is
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.