View source: R/FeatureSelection.R
FS.one.reduct.computation | R Documentation |
It is a function for computing one reduct from a discernibility matrix - it can use the greedy heuristic or a randomized (Monte Carlo) search.
FS.one.reduct.computation(discernibilityMatrix, greedy = TRUE, power = 1)
discernibilityMatrix |
a |
greedy |
a boolean value indicating whether the greedy heuristic or a randomized search should be used in computations. |
power |
a numeric representing a parameter of the randomized search heuristic. |
An object of a class "ReductSet"
.
Andrzej Janusz
Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, and Jakub Wroblewski, "Rough Set Algorithms in Classification Problem", Chapter 2 In: L. Polkowski, S. Tsumoto and T.Y. Lin (eds.): Rough Set Methods and Applications Physica-Verlag, Heidelberg, New York, p. 49 - 88 ( 2000).
BC.discernibility.mat.RST
and BC.discernibility.mat.FRST
.
########################################################
## Example 1: Generate one reduct and
## a new decision table using RST
########################################################
data(RoughSetData)
decision.table <- RoughSetData$hiring.dt
## build the decision-relation discernibility matrix
res.1 <- BC.discernibility.mat.RST(decision.table)
## generate all reducts
reduct <- FS.one.reduct.computation(res.1)
## generate new decision table
new.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct = 1))
##############################################################
## Example 2: Generate one reduct and
## a new decision table using FRST
##############################################################
data(RoughSetData)
decision.table <- RoughSetData$hiring.dt
## build the decision-relative discernibility matrix
control <- list(type.relation = c("crisp"),
type.aggregation = c("crisp"),
t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red",
control = control)
## generate a single reduct
reduct <- FS.one.reduct.computation(res.2)
## generate new decision table
new.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct = 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.