MV.missingValueCompletion: Wrapper function of missing value completion

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/MissingValue.R

Description

It is a wrapper function for missing value completion.

Usage

1
MV.missingValueCompletion(decision.table, type.method = "deletionCases")

Arguments

decision.table

a "DecisionTable" class representing a decision table. See SF.asDecisionTable. Note: missing values are recognized as NA.

type.method

one of the following methods:

  • "deletionCases": See MV.deletionCases.

  • "mostCommonValResConcept": See MV.mostCommonValResConcept.

  • "mostCommonVal": See MV.mostCommonVal.

  • "globalClosestFit": See MV.globalClosestFit.

  • "conceptClosestFit": See MV.conceptClosestFit.

Value

A class "MissingValue" which contains

Author(s)

Lala Septem Riza

References

J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51

See Also

MV.deletionCases, MV.mostCommonValResConcept, MV.mostCommonVal, MV.globalClosestFit, and MV.conceptClosestFit.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
#############################################
## Example :
#############################################
dt.ex1 <- data.frame(
     c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA),
     c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"),
     c("no", "yes", "no", "yes", "yes", "no", "yes", NA),
     c("yes", "yes", "no", "yes", "no", "no", "no", "yes"))
colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu")
decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4,
                                    indx.nominal = c(2:4))
indx = MV.missingValueCompletion(decision.table, type.method = "deletionCases")

## generate new decision table
new.decTable <- SF.applyDecTable(decision.table, indx)

RoughSets documentation built on May 29, 2017, 7:06 p.m.