MV.mostCommonValResConcept | R Documentation |
It is used for handling missing values by assigning the most common value of an attribute restricted to a concept.
If an attributes containing missing values is continuous/real, the method uses mean of the attribute instead of the most common value.
In order to generate a new decision table, we need to execute SF.applyDecTable
.
MV.mostCommonValResConcept(decision.table)
decision.table |
a |
A class "MissingValue"
. See MV.missingValueCompletion
.
Lala Septem Riza
J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51
MV.missingValueCompletion
#############################################
## Example: The most common value
#############################################
dt.ex1 <- data.frame(
c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA),
c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"),
c("no", "yes", "no", "yes", "yes", "no", "yes", NA),
c("yes", "yes", "no", "yes", "no", "no", "no", "yes"))
colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu")
decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4,
indx.nominal = c(2:4))
indx = MV.mostCommonValResConcept(decision.table)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.