The most common value or mean of an attribute restricted to a concept

Description

It is used for handling missing values by assigning the most common value of an attribute restricted to a concept. If an attributes containing missing values is continuous/real, the method uses mean of the attribute instead of the most common value. In order to generate a new decision table, we need to execute SF.applyDecTable.

Usage

1

Arguments

decision.table

a "DecisionTable" class representing a decision table. See SF.asDecisionTable. Note: missing values are recognized as NA.

Value

A class "MissingValue". See MV.missingValueCompletion.

Author(s)

Lala Septem Riza

References

J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51

See Also

MV.missingValueCompletion

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
#############################################
## Example: The most common value
#############################################
dt.ex1 <- data.frame(
     c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA),
     c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"),
     c("no", "yes", "no", "yes", "yes", "no", "yes", NA),
     c("yes", "yes", "no", "yes", "no", "no", "no", "yes"))
colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu")
decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4,
                                    indx.nominal = c(2:4))
indx = MV.mostCommonValResConcept(decision.table)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.