View source: R/RuleInduction.R
RI.CN2Rules.RST | R Documentation |
An implementation of verions of the famous CN2 algorithm for induction of decision rules, proposed by P.E. Clark and T. Niblett.
RI.CN2Rules.RST(decision.table, K = 3)
decision.table |
an object inheriting from the |
K |
a positive integer that controls a complexity of the algorithm. In each iteration |
An object of a class "RuleSetRST"
. For details see RI.indiscernibilityBasedRules.RST
.
Andrzej Janusz
P.E. Clark and T. Niblett, "The CN2 Induction algorithm", Machine Learning, 3, p. 261 - 284 (1986).
predict.RuleSetFRST
, RI.indiscernibilityBasedRules.RST
, RI.LEM2Rules.RST
,
RI.AQRules.RST
.
###########################################################
## Example
##############################################################
data(RoughSetData)
wine.data <- RoughSetData$wine.dt
set.seed(13)
wine.data <- wine.data[sample(nrow(wine.data)),]
## Split the data into a training set and a test set,
## 60% for training and 40% for testing:
idx <- round(0.6 * nrow(wine.data))
wine.tra <-SF.asDecisionTable(wine.data[1:idx,],
decision.attr = 14,
indx.nominal = 14)
wine.tst <- SF.asDecisionTable(wine.data[(idx+1):nrow(wine.data), -ncol(wine.data)])
true.classes <- wine.data[(idx+1):nrow(wine.data), ncol(wine.data)]
## discretization:
cut.values <- D.discretization.RST(wine.tra,
type.method = "unsupervised.quantiles",
nOfIntervals = 3)
data.tra <- SF.applyDecTable(wine.tra, cut.values)
data.tst <- SF.applyDecTable(wine.tst, cut.values)
## rule induction from the training set:
rules <- RI.CN2Rules.RST(data.tra, K = 5)
rules
## predicitons for the test set:
pred.vals <- predict(rules, data.tst)
## checking the accuracy of predictions:
mean(pred.vals == true.classes)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.