Nothing
################# Functionalize Logistic Regression an PVs #################
# 27 December 2024
# Rodolfo Ilizaliturri
#############################################################
# Goal: Obtain coefficients from logistic regression model in the form of Odds Ratio with greater speed
pv.do.odr <- function(df, x, y, by.var, w, ...){
# Goal: Get coefficients from logistic regression odds ratio
# ------ INPUTS ------.
# df : (dataframe) df to analyze previosly formated
# by.var : (string) column in which we'll break down results !IOP!: several variables
# x : (string vector) independant variable (1+)
# y : (string) dependant variable (just 1). Must have valus betweeen 0 and 1.
# w : (string) weighting variable (just 1)
if (is.data.table(df)) {
# Faster drop of NAs if it is a data.table
df.reg <- na.omit(df, cols = c(x,y)) %>%
mutate(intercept = 1)
} else {
# Selecting data and preparation
df.reg <- df[c(x,y,by.var,w)] %>%
mutate(intercept = 1)
df.reg <- df.reg %>% drop_na(all_of(c(x,y)))
}
#model only fitting values. Out: Coeff ONLY
res.df <- df.reg %>%
group_by(across(all_of(by.var))) %>%
do({
# Converting each weight to a proportion
weight_vec <- .[w] %>% as.matrix() %>% as.vector()
# Weights parameter represents the proportion of the total for each row (i.e. when the wight column sums up to one).
weight_proportion <- weight_vec / sum(weight_vec,na.rm = TRUE)
# Logistic regression from family binomial
model <- glm.fit(x = .[c('intercept', x)] %>% as.matrix(),
y = .[y] %>% as.matrix(),
weights = weight_proportion,
family = quasibinomial())
# Get coefficients and covert to data.frame
model %>%
coefficients() %>%
t() %>%
# exp() %>% #Odds Ratio changed for Delta Method
as.data.frame()
}
) %>%
ungroup()
return(res.df)
}
pv.do.odr.PAR <- function(df, x, y, by.var, w, ...){
# Goal: Get coefficients from logistic regression Odds Ratio
# ------ INPUTS ------.
# df : (dataframe) df to analyze previosly formated
# by.var : (string) column in which we'll break down results !IOP!: several variables
# x : (string vector) independant variable (1+)
# y : (string) dependant variable (just 1). Must have valus betweeen 0 and 1.
# w : (string) weighting variable (just 1)
# ...
#(functions) weighted.var
# get ... arguments
arg <- list(...)
if (is.data.table(df)) {
# Faster drop of NAs if it is a data.table
df.reg <- na.omit(df, cols = c(x,y)) %>%
mutate(intercept = 1)
} else {
# Selecting data and preparation
df.reg <- df[c(x,y,by.var,w)] %>%
mutate(intercept = 1)
df.reg <- df.reg %>% drop_na(all_of(c(x,y)))
}
#model only fitting values. Out: Coeff ONLY
res.df <- df.reg %>%
group_by(across(all_of(by.var))) %>%
do({
# Converting each weight to a proportion
weight_vec <- .[w] %>% as.matrix() %>% as.vector()
# Weights parameter represents the proportion of the total for each row (i.e. when the wight column sums up to one).
weight_proportion <- weight_vec / sum(weight_vec,na.rm = TRUE)
# Logistic regression from family binomial
model <- glm.fit(x = .[c('intercept', x)] %>% as.matrix(),
y = .[y] %>% as.matrix(),
weights = weight_proportion,
family = quasibinomial())
# Get coefficients and covert to data.frame
model %>%
coefficients() %>%
t() %>%
# exp() %>% #Odds Ratio changed for Delta Method
as.data.frame()
}
) %>%
ungroup()
return(res.df)
}
pv.loop.odr.on.weights <- function (data, x, y, by.var, over, test = F, flag = F,
svy, rep_weights, fast = F, pv = F, ...) {
# Goal: Regression model results for each weight
# ------ INPUTS ------.
# data : (dataframe) df to analize
# rep_weights : (string vector) names of replicated weight vars
# reg.model : (expression) linear model to implement
# by.var : (string vector) variables to break analysis by
# fast : (bool) TRUE → Only do 6 replicated weights
# pv : (Bool) TRUE → We are in plausible values and must parallelize
# If fast then less replicated weights
if (fast) {
rep_weights <- rep_weights[1:6]
}
if (!pv) {
# NON PARALLEL ------------------------------------------------------------.
res.l <- lapply(rep_weights, function(w.i){
#Do lm, add weight to colnames, append new data of results to list
res.df <- pv.do.odr(data, x, y, all_of(c(by.var,over)), w.i) %>%
unite("by.var", all_of(c(by.var,over)), sep = "|")
# Change col names to include weight name
# colnames(res.df)[-1] <- paste0(colnames(res.df)[-1], paste0("|",w.i))
return(res.df)
})
# PARALLEL ---------------------------------------------------------------.
}else{
res.l <- foreach(w.i = rep_weights,
.packages = c("dplyr","tidyr","data.table","tibble"),
.export = c("pv.do.odr.PAR","n.obs.x",
"weighted.var","...")) %dopar% {
res.df <- pv.do.odr.PAR(data.par,
x,
y,
all_of(c(by.var,over)),
w.i,
weighted.var = weighted.var,
...=...) %>%
unite("by.var", all_of(c(by.var,over)), sep = "|")
return(res.df)
}
}
# ---------------- FLAGS
if (flag) {
# Get n for flags and separate column
# NOTE!!!!!!: Here x = y since the target variable in regressions is the y
n.df <- n.obs.x(df = data, by.var = c(by.var, over), x = y, svy = svy)
res.l <- lapply(res.l, function(res.i){
# Merge both dfs together n and freqs
res.df <- left_join(res.i, n.df, by = c("by.var"="by.group"))
#Assign NaN when not enough coverage for estimation (flags.nan is deprecated)
res.df <- flags(data = res.df, svy = svy)
return(res.df)
})
}
# ---------------- .
# ---------------- TEST
if (test) {
# Create extra rows with test differences
res.l <- lapply(res.l, function(res.i){
# Split by.var into c(by.var, over, x) by |
res.df <- res.i %>%
separate(col = "by.var", into = all_of(c(by.var, over)), sep = "\\|") %>%
over.test(over = c(over)) %>%
rename("by.var"="by.group")
return(res.df)
})
}
# ---------------- .
# ---------------- FORMAT DF to have over on the columns
if (length(over)>0) {
res.l <- lapply(res.l, function(res.i){
res.df <- res.i %>%
# Split by.var leaving only the variables in "by.var" united
separate(col = "by.var", into = all_of(c(by.var, over)), sep = "\\|") %>%
unite(col = "by.var", all_of(by.var), sep = "|") %>%
# Pivot to columns over
pivot_wider(names_from = all_of(c(over)),
values_from = colnames(select_if(.,is.numeric)),
names_sep = "..")
return(res.df)
})
}
# ---------------- .
# ---------------- ASSIGN odds_{name.of.y} to each dataframe
res.l <- lapply(res.l, function(res.i){
res.i <- res.i
colnames(res.i)[-1] <- paste0("odr_", y,".", colnames(res.i)[-1])
return(res.i)
})
return(res.l)
}
# --------- FINAL LOGISTIC MODEL ODDS RATIO FUNCTION
pv.rrepest.odr <- function(data, svy, x, y, by.var = NULL, over = NULL, test = F,
user_na=F, flag = F, fast = F, pv = F, ...) {
# Goal: Dataframe with β and SE by Fay's BRR model for logistic regression Odds Ratios
# ------ INPUTS ------.
# data : (dataframe) df to analyze
# svy : List of possible projects to analyse PIAAC, PISA, TALISSCH and TALISTCH
# isced : (number) isced level to analyze
# by.var : (string) column in which we'll break down results
# x : (string vector) independant variable (1+)
# y : (string) dependant variable (just 1). Must have values between 0 and 1.
# user_na : (Bool) TRUE → show nature of user defined missing values in by.var
# over : (vector string) columns over which to do analysis
# test : (bool) If TRUE will calculate the difference between over variables
# flag : (Bool) TRUE → Show NaN when there is not enough cases (or schools)
# fast : (bool) TRUE → Only do 6 replicated weights
# pv : (Bool) TRUE → We are in plausible values and must parallelize
# ...
# isced : (number) isced level to analyze
# Get optional arguments
extra.args <- list(...)
# If there is an OVER variable remove NAs from OVER vars
# if (length(over) > 0) {
# for (i in over) {
# df <- df %>% drop_na(i)
# }
# }
# Get weight names
weight.names <- replicated_w_names(svy, ...)
# Loop over each variable
brr.res <- pv.loop.odr.on.weights(data = data,
x = x,
y = y,
svy = svy,
by.var = by.var,
over = over,
test = test,
flag = flag,
rep_weights = weight.names,
fast = fast,
pv = pv)
# Reorder data to have b and se intertwined
res <- pv.get.se.reorder(brr.res, svy = svy, pv = pv, ... = ...)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.