Description Usage Arguments Value See Also Examples
Start COBRA (constraint-based optimization) phase I and/or phase II for object cobra
1 | startCobra(cobra)
|
cobra |
initialized COBRA object, i.e. the return value from |
cobra
, an object of class COBRA
cobraInit
, cobraPhaseI
, cobraPhaseII
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ## solve G01 problem
## defining the constraint problem: G01
fn<-function(x){
obj<- sum(5*x[1:4])-(5*sum(x[1:4]*x[1:4]))-(sum(x[5:13]))
g1<- (2*x[1]+2*x[2]+x[10]+x[11] - 10)
g2<- (2*x[1]+2*x[3]+x[10]+x[12] - 10)
g3<- (2*x[2]+2*x[3]+x[11]+x[12] - 10)
g4<- -8*x[1]+x[10]
g5<- -8*x[2]+x[11]
g6<- -8*x[3]+x[12]
g7<- -2*x[4]-x[5]+x[10]
g8<- -2*x[6]-x[7]+x[11]
g9<- -2*x[8]-x[9]+x[12]
res<-c(obj, g1 ,g2 , g3
, g4 , g5 , g6
, g7 , g8 , g9)
return(res)
}
fName="G01"
d=13
lower=rep(0,d)
upper=c(rep(1,9),rep(100,3),1)
set.seed(1)
xStart<-runif(d,min=lower,max=upper)
## Initializing cobra
cobra <- cobraInit(xStart=xStart, fn=fn, fName=fName, lower=lower, upper=upper,
feval=55, seqFeval=400, initDesPoints=3*d, DOSAC=1, cobraSeed=1)
cobra <- startCobra(cobra)
## The true solution is at solu = c(rep(1,9),rep(3,3),1)
## where the optimum is f(solu) = optim = -15
## The solutions from SACOBRA is close to this:
print(getXbest(cobra))
print(getFbest(cobra))
## Plot the resulting error (best-so-far feasible optimizer result - true optimum)
## on a logarithmic scale:
optim = -15
plot(cobra$df$Best-optim,log="y",type="l",ylab="error",xlab="iteration",main=fName)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.