Nothing
###################################################################
# The PROJECTED ITERATED NORMED GRADIENT #
# F. mortier, C. Trottier, G. Cornu and X. Bry #
###################################################################
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Z: matrix of the working variables
# X: matrix of the normalized explanatory variables
# AX: matrix of the additional covariates
# W: matrix of weights
# u: vector of initial loadings
# method: structural relevance criterion
# return: the FINAL updated loading vectors
mixed.ping <- function(Z,X,AX,W,F,u,method,resACP) {
u_cur <- u
h_cur <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=u_cur,method=method,resACP=resACP)$h
u_new <- mixed.update_u(Z=Z,X=X,AX=AX,W=W,F=F,u=u_cur,method=method,resACP=resACP)
h_new <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=u_new,method=method,resACP=resACP)$h
ing_iter <- 0
while((abs((h_new-h_cur)/h_cur)>method$epsilon)&(ing_iter<=method$maxiter)){
u_cur <- u_new
h_cur <- h_new
u_new <- mixed.update_u(Z=Z,X=X,AX=AX,W=W,F=F,u=u_cur,method=method,resACP=resACP)
h_new <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=u_new,method=method,resACP=resACP)$h
ing_iter <- ing_iter+1
}
return(u_new)
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Z: matrix of the working variables
# X: matrix of the normalized explanatory variables
# AX: matrix of the additional covariates
# W: matrix of weights
# F: matrix of the previously calculated components
# u: vector of initial loadings
# method: structural relevance criterion
# return: the CURRENT updated loading vectors
mixed.update_u <- function(Z,X,AX,W,F,u,method,resACP){
out_h <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=u,method=method,resACP=resACP)
if(is.null(F)) {
m <- out_h$gradh/sqrt(sum(out_h$gradh^2))
} else {
no <- nrow(X)
po <- ncol(X)
if(po>no){
utilPCA = resACP$utilPCA#eigen(crossprod(x = X)/no,symmetric = TRUE)
pourcent.variance = resACP$pourcent.variance#utilPCA$values/sum(utilPCA$values)
nbcomp = resACP$nbcomp#max( which(c(pourcent.variance > (1/po))==TRUE ))
Xpc = resACP$Xpc#X%*%utilPCA$vectors[,1:nbcomp]
C <- (crossprod(Xpc,F))#/nrow(X))
proj_C_ortho <- out_h$gradh - C%*%solve(crossprod(C),crossprod(C,out_h$gradh))
m <- c(proj_C_ortho / sqrt(sum(proj_C_ortho^2)))
}else{
C <- (crossprod(X,F))#/nrow(X))
proj_C_ortho <- out_h$gradh - C%*%solve(crossprod(C),crossprod(C,out_h$gradh))
m <- c(proj_C_ortho / sqrt(sum(proj_C_ortho^2)))
}
}
h_m <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=m,method=method,resACP=resACP)$h
h_u <- out_h$h
k <- 1
while((h_m<h_u)&(k<method$bailout)){
m <- c(u)+m
m <- m/sqrt(sum(m^2))
h_m <- mixed.hFunct(Z=Z,X=X,AX=AX,W=W,u=m,method=method,resACP=resACP)$h
k <- k+1
}
u_new <- m
return(u_new)
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Z: matrix of the working variables
# X: matrix of the normalized explanatory variables
# AX: matrix of the additional covariates
# W: matrix of weights
# u: vector of initial loadings
# method: structural relevance criterion
# return: a list containing
# - the value of h = (1-s)*log(psi) + s*log(phi)
# with psi = GOF = Goodness-Of-Fit and phi = SR = Structural Relevance
# - the values of phi, grad.phi, psi, grad.psi, and grad.h)
mixed.hFunct<- function(Z,X,AX,W,u,method,resACP){
no <- nrow(X)
po <- ncol(X)
if(po>no){
# utilPCA = eigen(crossprod(x = X)/no,symmetric = TRUE)
# pourcent.variance = utilPCA$values/sum(utilPCA$values)
# nbcomp = max( which(c(pourcent.variance > (1/po))==TRUE ))
# Xpc = X%*%utilPCA$vectors[,1:nbcomp]
utilPCA = resACP$utilPCA
pourcent.variance = resACP$pourcent.variance
nbcomp = resACP$nbcomp
Xpc = resACP$Xpc
f <- c(Xpc%*%u)
}else{
f <- c(X%*%u)
}
psi <- 0
gradpsi <- rep(0,length(u))
if(!is.null(AX)){
for(k in 1:ncol(Z)){
AXtWkAX <- crossprod(AX,W[,k]*AX)
projWkfAX <- c(AX%*%solve(AXtWkAX,crossprod(AX,W[,k]*f)))
projWkforthoAX <- f - projWkfAX
Zk <- mixed.wtScale(Z[,k],W[,k])#Z[,k] - sum(W[,k]*Z[,k])
WZk <- W[,k]*Zk
projWkZAX <- AX%*%solve(AXtWkAX,crossprod(AX,WZk))
# calculate psi
scalsqpfZ <- sum(c(projWkforthoAX)*WZk)^2
scalsqpfpf <- sum(c(projWkforthoAX)^2*W[,k])
term1psi <- sum(scalsqpfZ/(scalsqpfpf))
term2psi <- sum(WZk*projWkZAX)
psi <- psi+term1psi+term2psi
#calculate grad.psi
PiorthoPrimeWkZ <- WZk - W[,k]*AX%*%solve(AXtWkAX,crossprod(AX,WZk))
if(po>no){
XprimeprojorthoWZ <- crossprod(Xpc,PiorthoPrimeWkZ)
term1 <- c(XprimeprojorthoWZ%*%crossprod(XprimeprojorthoWZ,u))/(scalsqpfpf)
WprojWkOrthof <- W[,k]*projWkforthoAX
term2 <- scalsqpfZ*c(crossprod(Xpc,WprojWkOrthof))/(scalsqpfpf^2)
gradpsi <- gradpsi +(term1-term2)
}else{
XprimeprojorthoWZ <- crossprod(X,PiorthoPrimeWkZ)
term1 <- c(XprimeprojorthoWZ%*%crossprod(XprimeprojorthoWZ,u))/(scalsqpfpf)
WprojWkOrthof <- W[,k]*projWkforthoAX
term2 <- scalsqpfZ*c(crossprod(X,WprojWkOrthof))/(scalsqpfpf^2)
gradpsi <- gradpsi +(term1-term2)
}
}
gradpsi <- 2*gradpsi
}else{
for(k in 1:ncol(Z)){
Zk <- mixed.wtScale(Z[,k],W[,k])#Z[,k] - sum(W[,k]*Z[,k])
WZk <- W[,k]*Zk
scalsqpfZ <- sum(c(f)*WZk)^2
scalsqpfpf <- sum(c(f)^2*W[,k])
# calculate psi
psi <- psi+sum(scalsqpfZ/(scalsqpfpf))
#calculate grad.psi
if(po>no){
XprimeWZ <- crossprod(Xpc,WZk) #X'W_k Z_k
term1 <- c(XprimeWZ%*%crossprod(XprimeWZ,u))/(scalsqpfpf)
term2 <- scalsqpfZ*c(crossprod(Xpc,W[,k]*f))/(scalsqpfpf^2)
gradpsi <- gradpsi +(term1-term2)
}else{
XprimeWZ <- crossprod(X,WZk) #X'W_k Z_k
term1 <- c(XprimeWZ%*%crossprod(XprimeWZ,u))/(scalsqpfpf)
term2 <- scalsqpfZ*c(crossprod(X,W[,k]*f))/(scalsqpfpf^2)
gradpsi <- gradpsi +(term1-term2)
}
}
gradpsi <- 2*gradpsi
}
n <- nrow(X)
# calculate phi when method="cv" (Component Variance)
if(method$phi=="cv") {
phi <- c(crossprod(f))/n
# calculate grad.phi
if(po>no){
gradphi <- c(2*crossprod(Xpc,f/n))
}else{
gradphi <- c(2*crossprod(X,f/n))
}
} else {
### calculate phi when method="vpi" (Variable Powered Inertia) with l>=1
scalsqfX <- colSums(f*X/n)
phi <- (sum((scalsqfX^2)^method$l))^(1/method$l)
# calculate grad.phi
if(po>no){
XpcWX <- crossprod(Xpc, X)
gradphi <- 2*phi^(1-method$l)*rowSums(XpcWX%*%diag( (scalsqfX^2)^method$l * scalsqfX^(-1) ))
}else{
XtWX <- crossprod(X)/n
gradphi <- 2*phi^(1-method$l)*rowSums(XtWX%*%diag( (scalsqfX^2)^method$l * scalsqfX^(-1) ))
#gradphi <- 2*phi^(1-method$l)*rowSums(XtWX%*%diag(scalsqfX)^(2*method$l-1))
}
}
# s in [0..1]
# h = log(psi)+method$s*log(phi)
# gradh=gradpsi/psi+method$s*gradphi/phi
h = (1-method$s)*log(psi)+method$s*log(phi)
gradh=(1-method$s)*gradpsi/psi+method$s*gradphi/phi
return(list(h=h, gradh=gradh,psi=psi,gradpsi=gradpsi,phi=phi,gradphi=gradphi))
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# # method for STRUCTURAL RELEVANCE criterion
# # phi: character string describing structural relevance
# # used in the regularization process
# # Allowed values are "vpi" for Variable Powered Inertia
# # and "cv" for Component Variance. Default to "vpi".
# # l: numeric argument (>1) tuning the importance of variable bundle locality.
# # s: numeric argument (in [0,1]) tuning the strength of structural relevance
# # with respect to goodness of fit.
# # maxiter: integer for maximum number of iterations of \code{SR} function
# # epsilon: positive convergence threshold
# # bailout: integer argument
# methodSR <- function(phi="vpi",l=1,s=1/2,maxiter=1000,epsilon=1e-6,bailout=10){
# # check arguments
# if(!(phi %in% c("vpi","cv")))
# stop("phi should be \"vpi\" or \"cv\"")
# if(!is.numeric(l) || l<1)
# stop("l must be greater than 1")
# if(!is.numeric(s) || s<0 || s>1)
# stop("s must be between 0 and 1")
# if(!is.numeric(maxiter) || maxiter<1)
# stop("maxiter must be an integer greater than 1")
# if(!is.numeric(epsilon) || epsilon<=0)
# stop("epsilon must be a positive numeric")
# if(!is.numeric(bailout) || bailout<1)
# stop("bailout must be an integer greater than 1")
#
# structure(list(
# method="sr",
# phi=phi,
# l=l,
# s=s,
# maxiter=maxiter,
# epsilon=epsilon,
# bailout=bailout#1000
# ),
# class="method.SCGLR",
# description="Method iterative normed gradient (ING) for Structural Relevance"
# )
# }
# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# auxiliary functions
############################
# weighted scale function
# x: vector to scale
# w: weight
# return: scaled vector
mixed.wtScale <-function(x,w){
xc=x-sum(w*x)
v=sum(xc^2*w)
xcr=xc/sqrt(v)
return(xcr)
}
############################
############################
# x: vector to center
# w: weight
# return: centered vector
mixed.wtCenter=function(x,w){
xc=x-sum(w*x)
return(xc)
}
############################
############################
mixed.checkLossFunction <- function(type){
if(!type %in% c("auc","likelihood","aic","aicc","bic","mspe"))
stop("Unknown loss function!")
}
# returns string w/o leading or trailing whitespace
mixed.trim <- function(x){
gsub("^\\s+|\\s+$", "", x)}
############################
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.