View source: R/funContinuous.R
funPowellS | R Documentation |
Powells 4-dim Test Function
funPowellS(x)
x |
matrix (dim 1x4) of points to evaluate with the function. Rows for points and columns for dimension. |
1-column matrix with resulting function values
More, J. J., Garbow, B. S., and Hillstrom, K. E. (1981). Testing unconstrained optimization software. Trond Steihaug and Sara Suleiman Global convergence and the Powell singular function ACM Transactions on Mathematical Software (TOMS), 7(1), 17-41. doi: 10.1145/355934.355936 http://owos.gm.fh-koeln.de:8055/bartz/optimization-ait-master-2020/blob/master/Jupyter.d/Exercise-VIIa.ipynb http://bab10.bartzandbartz.de:8033/bartzbeielstein/bab-optimization-ait-master-2020/-/blob/master/Jupyter.d/01spotNutshell.ipynb https://www.mat.univie.ac.at/~neum/glopt/bounds.html
Powells Test function, M. J. D. Powell, 1962 An automatic method for finding the local minimum of a function. The Computer Journal, 3(3), 175-184. https://www.sfu.ca/~ssurjano/powell.html
x1 <- matrix(c(0,0,0,0),1,) funPowellS(x1) x2 <- matrix(c(3,-1,0,1),1,) funPowellS(x2) x3 <- matrix(c(0,0,0,-2),1,) funPowellS(x3) # optimization run with SPOT and 15 evaluations res_fun <- spot(,funPowellS,c(-4,-4,-4,-4 ),c(5,5,5,5),control=list(funEvals=15)) res_fun
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.