plotPCA | R Documentation |
plotPCA returns a 2D plot of optimization data in it's own space using buildPCA. It plots first two PCAs by default.
plotPCA(x, control = list())
x |
dataset of parameters to be transformed & plotted |
control |
control list |
It returns a plot image.
Alpar Gür alpar.guer@smail.th-koeln.de
buildPCA
, biplot
# define objective function funGauss <- function (x) { gauss <- function(par) { y <- c(0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, 0.3989, 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009) m <- 15 x1 <- par[1] x2 <- par[2] x3 <- par[3] fsum <- 0 for (i in 1:m) { ti <- (8 - i) * 0.5 f <- x1 * exp(-0.5 * x2 * (ti - x3) ^ 2) - y[i] fsum <- fsum + f * f } return(fsum) } matrix(apply(x, # matrix 1, # margin (apply over rows) gauss), , 1) # number of columns } # define starting point x1 <- matrix(c(1,1,1),1,) funGauss(x1) # define boundaries lower = c(-0.001,-0.007,-0.003) upper = c(0.5,1.0,1.1) res <- spot(,funGauss, lower=lower, upper=upper, control=list(funEvals=15)) control = list(scale=TRUE) #pca control list, # scale the variables plotPCA(res$x, control=control) # plot first two PCAs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.