View source: R/plotPCAvariance.R
plotPCAvariance | R Documentation |
plotPCAvariance illustrates the total variance within the dataset. It plots the effectiveness of each principal component and can be used to decide how many and which prinicpal components to plot. In order to create this plot, users don't need to build PCA beforehand since it handles this process automatically.
plotPCAvariance(x)
x |
dataset of parameters to be transformed & plotted |
It returns a plot image.
Alpar Gür alpar.guer@smail.th-koeln.de
buildPCA
# objective function funBard <- function (x) { bard <- function(par) { y <- c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39) m <- 15 x1 <- par[1] x2 <- par[2] x3 <- par[3] fsum <- 0 for (u in 1:m) { v <- 16 - u w <- min(u, v) f <- y[u] - (x1 + u / (v * x2 + w * x3)) fsum <- fsum + f * f } return(fsum) } matrix(apply(x, # matrix 1, # margin (apply over rows) bard), , 1) # number of columns } # starting point x1 <- matrix(c(1,1),1,) funBard(x1) #boundaries lower = c(-0.001,-0.007,-0.003) upper = c(0.5,1.0,1.1) res <- spot(,funBard, lower=lower, upper=upper, control=list(funEvals=15)) plotPCAvariance(res$x) # plot variance within the dataset
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.