Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval=FALSE--------------------------------------------------------------
# library(microbenchmark)
# library(SPOT)
# library(babsim.hospital)
# n <- 3
#
# ### Compare Run Time
# x <- matrix(as.numeric(getParaSet(5374)[1,-1]),1,)
# bounds <- getBounds()
# lower <- bounds$lower
# upper <- bounds$upper
#
# resb <- microbenchmark(
# spot(x, funBaBSimHospital, lower , upper, control=list(funEvals=10*n)),
# spot(x, funBaBSimHospital, lower , upper, control=list(funEvals=10*n, model = buildGaussianProcess)),
# times = 2)
# print(resb)
# boxplot(resb)
#
# ### Compare Performance
# rm(list=ls())
# library(microbenchmark)
# library(SPOT)
# set.seed(1)
# n <- 30
# low = -2
# up = 2
# a = runif(n, low, 0)
# b = runif(n, 0, up)
# x0 = a + runif(n)*(b-a)
# #plot(a, type = "l", ylim=c(up,low))
# #lines(b)
# #lines(x0)
# x0 = matrix( x0, nrow = 1)
#
# set.seed(1)
# perf1 <- spot(x= x0, funSphere, a, b, control=list(time=list(maxTime = 0.25), funEvals=10*n, plots=TRUE,
# model = buildKriging, optimizer=optimNLOPTR))
# set.seed(1)
# perf2 <- spot(x= x0, funSphere, a, b, control=list(time=list(maxTime = 0.25), funEvals=10*n, plots=TRUE,
# model = buildGaussianProcess, optimizer=optimNLOPTR, directOptControl = list(funEvals=0)))
#
# set.seed(1)
# perf3 <- spot(x= x0, funSphere, a, b, control=list(time=list(maxTime = 0.25), funEvals=10*n, plots=TRUE,
# model = buildGaussianProcess, optimizer=optimNLOPTR,
# directOptControl = list(funEvals=10)))
#
# ### Plot Repeats (Sphere Function)
# rm(list=ls())
# library(microbenchmark)
# library(SPOT)
# set.seed(1)
# n <- 30
# low = -2
# up = 2
# a = runif(n, low, 0)
# b = runif(n, 0, up)
# x0 = a + runif(n)*(b-a)
# #plot(a, type = "l", ylim=c(up,low))
# #lines(b)
# #lines(x0)
# x0 = matrix( x0, nrow = 1)
#
# reps <- 10
# end <- 10*n
# ninit <- n
#
# progSpot <- matrix(NA, nrow = reps, ncol = end)
# for(r in 1:reps){
# set.seed(r)
# x0 <- a + runif(n)*(b-a)
# x0 = matrix( x0, nrow = 1)
# sol <- spot(x= x0, funSphere, a, b, control=list(funEvals=end,
# model = buildGaussianProcess,
# optimizer=optimNLOPTR,
# directOptControl = list(funEvals=0),
# designControl = list(size = ninit)))
# progSpot[r, ] <- bov(sol$y, end)
#
# }
#
# matplot(t(progSpot), type="l", col="gray", lty=1,
# xlab="n: blackbox evaluations", ylab="best objective value")
# abline(v=ninit, lty=2)
# legend("topright", "seed LHS", lty=2, bty="n")
#
# f <- funSphere
#
#
# fprime <- function(x) {
# x <- matrix( x, 1)
# ynew <- as.vector(f(x))
# y <<- c(y, ynew)
# return(ynew)
# }
#
# progOptim <- matrix(NA, nrow=reps, ncol=end)
# for(r in 1:reps) {
# y <- c()
# x0 <- a + runif(n)*(b-a)
# x0 <- matrix( x0, 1, )
# os <- optim(x0, fprime, lower=a, upper=b, method="L-BFGS-B")
# progOptim[r,] <- bov(y, end)
# }
#
#
# matplot(t(progOptim), type="l", col="red", lty=1,
# xlab="n: blackbox evaluations", ylab="best objective value")
# matlines(t(progSpot), type="l", col="gray", lty=1)
# legend("topright", c("Spot", "optim"), col=c("gray", "red"), lty=1, bty="n")
#
#
# ### babsim.hospital
# rm(list=ls())
# library(microbenchmark)
# library(SPOT)
# library(babsim.hospital)
# library(nloptr)
# library(parallel)
#
# ### New Babsim
# getParallelBaseObjFun <- function(region = 5374, nCores = 2){
# N_REPEATS = 10/nCores ## cores are used in parallel, change repeats if desired
# singleRepeat <- function(index, x){
# rkiwerte = babsim.hospital::rkidata
# icuwerte = babsim.hospital::icudata
# rkiwerte <- rkiwerte[rkiwerte$Refdatum <= as.Date("2020-12-09"),]
# icuwerte <- icuwerte[icuwerte$daten_stand <= as.Date("2020-12-09"),]
# region <- 5374
# fun <- babsim.hospital:::getTrainTestObjFun(region = region,
# rkiwerte = rkiwerte,
# icuwerte = icuwerte,
# TrainSimStartDate = as.Date("2020-12-09") - 10*7,
# TrainFieldStartDate = as.Date("2020-12-09") - 6*7,
# tryOnTestSet = FALSE)
# fun(x)
# }
# function(x){
# res <- mclapply(1:N_REPEATS, singleRepeat, x, mc.cores = nCores)
# y <- as.numeric(unlist(res))
# median(y)
# }
# }
# ## Call Example
# objFun <- getParallelBaseObjFun()
# objFun(as.numeric(babsim.hospital::getParaSet(5315)[1,-1]))
#
#
#
# ### Old Version
# packageVersion("babsim.hospital")
# funHosp <- getTrainTestObjFun(verbosity = 10000,
# parallel=TRUE,
# tryOnTestSet=FALSE,
# TrainSimStartDate = Sys.Date() - 12 * 7)
# f <- function(x)
# {matrix(apply(x, # matrix
# 1, # margin (apply over rows)
# funHosp),
# ,1) # number of columns
# }
#
# lo <- getBounds()$lower
# up <- getBounds()$upper
#
# n <- length(lo)
# reps <- 10
# end <- 3*n
# ninit <- n+1
#
# para <- getStartParameter(region = 5374)
#
# progSpot <- matrix(NA, nrow = reps, ncol = end)
# for(r in 1:reps){
# set.seed(r)
# x0 <- para[1,]
# x0 = matrix( x0, nrow = 1)
# sol <- spot(x= x0, f, lo, up, control=list(funEvals=end,
# model = buildGaussianProcess,
# optimizer=optimNLOPTR,
# directOptControl = list(funEvals= n),
# designControl = list(size = ninit)))
# progSpot[r, ] <- bov(sol$y, end)
#
# }
#
# matplot(t(progSpot), type="l", col="gray", lty=1,
# xlab="n: blackbox evaluations", ylab="best objective value")
# abline(v=ninit, lty=2)
# legend("topright", "seed LHS", lty=2, bty="n")
#
# ## f <- funSphere
#
# fprime <- function(x) {
# x <- matrix( x, 1)
# ynew <- as.vector(f(x))
# y <<- c(y, ynew)
# return(ynew)
# }
#
# progOptim <- matrix(NA, nrow=reps, ncol=end)
# for(r in 1:reps) {
# y <- c()
# x0 <- para[1,]
# x0 <- matrix( x0, 1, )
# os <- optim(x0, fprime, lower=lo, upper=up, method="L-BFGS-B", control = list(maxit = end))
# progOptim[r,] <- bov(y, end)
# }
#
#
# matplot(t(progOptim), type="l", col="red", lty=1,
# xlab="n: blackbox evaluations", ylab="best objective value")
# matlines(t(progSpot), type="l", col="gray", lty=1)
# legend("topright", c("Spot", "optim"), col=c("gray", "red"), lty=1, bty="n")
#
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.