Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- experiment9_50, eval = FALSE--------------------------------------------
# # Determine the effect of subsets for subsetN = 50
#
# rm(list=ls())
# library(SPOT)
# library(babsim.hospital)
# n <- 29
# reps <- 10
# funEvals <- 10*n
# size <- 2*n
# subsetN <- 50
# nCores <- 8
#
# progSpot <- matrix(NA, nrow = reps, ncol = 2*funEvals)
# #x0 <- getStartParameter()
# x0 <- matrix(as.numeric(babsim.hospital::getParaSet(5374)[1,-1]),1,)
# bounds <- getBounds()
# a <- bounds$lower
# b <- bounds$upper
# g <- function(x) {
# return(rbind(a[1] - x[1], x[1] - b[1], a[2] - x[2], x[2] - b[2],
# a[3] - x[3], x[3] - b[3], a[4] - x[4], x[4] - b[4],
# a[5] - x[5], x[5] - b[5], a[6] - x[6], x[6] - b[6],
# a[7] - x[7], x[7] - b[7], a[8] - x[8], x[8] - b[8],
# a[9] - x[9], x[9] - b[9], a[10] - x[10], x[10] - b[10],
# a[11] - x[11], x[11] - b[11], a[12] - x[12], x[12] - b[12],
# a[13] - x[13], x[13] - b[13], a[14] - x[14], x[14] - b[14],
# a[15] - x[15], x[15] - b[15], a[16] - x[16], x[16] - b[16],
# a[17] - x[17], x[17] - b[17], a[18] - x[18], x[18] - b[18],
# a[19] - x[19], x[19] - b[19], a[20] - x[20], x[20] - b[20],
# a[21] - x[21], x[21] - b[21], a[22] - x[22], x[22] - b[22],
# a[23] - x[23], x[23] - b[23], a[24] - x[24], x[24] - b[24],
# a[25] - x[25], x[25] - b[25], a[26] - x[26], x[26] - b[26],
# a[27] - x[27], x[27] - b[27], x[15] + x[16] - 1,
# x[17] + x[18] + x[19] - 1, x[20] + x[21] - 1, x[23] + x[29] - 1)
# )
# }
# for(r in 1:reps){
# set.seed(r)
# print(r)
# sol <- spot(x = x0,
# fun = funBaBSimHospital,
# lower = a,
# upper = b,
# verbosity = 0,
# nCores = nCores,
# control = list(funEvals = 2*funEvals,
# noise = TRUE,
# designControl = list(
# # inequalityConstraint = g,
# size = size,
# retries = 1000),
# optimizer = optimNLOPTR,
# optimizerControl = list(
# opts = list(algorithm = "NLOPT_GN_ISRES"),
# eval_g_ineq = g),
# model = buildKriging,
# plots = FALSE,
# progress = TRUE,
# directOpt = optimNLOPTR,
# directOptControl = list(
# funEvals = 0),
# eval_g_ineq = g,
# subsetSelect = selectN,
# subsetControl = list(N = subsetN))
# )
# progSpot[r, ] <- prepareBestObjectiveVal(sol$y, 2*funEvals)
# }
#
# matplot(t(progSpot), type="l", col="red", lty=1, xlab="n: blackbox evaluations", ylab="best objective value", log="y")
# abline(v=size, lty=2)
#
# save(progSpot, file="experiment9_50.RData")
## ---- experiment9_100, eval = FALSE-------------------------------------------
# # Determine the effect of subsetN
#
# rm(list=ls())
# library(SPOT)
# library(babsim.hospital)
# n <- 29
# reps <- 10
# funEvals <- 10*n
# size <- 2*n
# nCores <- 8
#
# subsetN <- 100
# FILENAME = "experiment9_100.RData"
#
#
# progSpot <- matrix(NA, nrow = reps, ncol = 2*funEvals)
# #x0 <- getStartParameter()
# x0 <- matrix(as.numeric(babsim.hospital::getParaSet(5374)[1,-1]),1,)
# bounds <- getBounds()
# a <- bounds$lower
# b <- bounds$upper
# g <- function(x) {
# return(rbind(a[1] - x[1], x[1] - b[1], a[2] - x[2], x[2] - b[2],
# a[3] - x[3], x[3] - b[3], a[4] - x[4], x[4] - b[4],
# a[5] - x[5], x[5] - b[5], a[6] - x[6], x[6] - b[6],
# a[7] - x[7], x[7] - b[7], a[8] - x[8], x[8] - b[8],
# a[9] - x[9], x[9] - b[9], a[10] - x[10], x[10] - b[10],
# a[11] - x[11], x[11] - b[11], a[12] - x[12], x[12] - b[12],
# a[13] - x[13], x[13] - b[13], a[14] - x[14], x[14] - b[14],
# a[15] - x[15], x[15] - b[15], a[16] - x[16], x[16] - b[16],
# a[17] - x[17], x[17] - b[17], a[18] - x[18], x[18] - b[18],
# a[19] - x[19], x[19] - b[19], a[20] - x[20], x[20] - b[20],
# a[21] - x[21], x[21] - b[21], a[22] - x[22], x[22] - b[22],
# a[23] - x[23], x[23] - b[23], a[24] - x[24], x[24] - b[24],
# a[25] - x[25], x[25] - b[25], a[26] - x[26], x[26] - b[26],
# a[27] - x[27], x[27] - b[27], x[15] + x[16] - 1,
# x[17] + x[18] + x[19] - 1, x[20] + x[21] - 1, x[23] + x[29] - 1)
# )
# }
# for(r in 1:reps){
# set.seed(r)
# print(r)
# sol <- spot(x = x0,
# fun = funBaBSimHospital,
# lower = a,
# upper = b,
# verbosity = 0,
# nCores = nCores,
# control = list(funEvals = 2*funEvals,
# noise = TRUE,
# designControl = list(
# # inequalityConstraint = g,
# size = size,
# retries = 1000),
# optimizer = optimNLOPTR,
# optimizerControl = list(
# opts = list(algorithm = "NLOPT_GN_ISRES"),
# eval_g_ineq = g),
# model = buildKriging,
# plots = FALSE,
# progress = TRUE,
# directOpt = optimNLOPTR,
# directOptControl = list(
# funEvals = 0),
# eval_g_ineq = g,
# subsetSelect = selectN,
# subsetControl = list(N = subsetN))
# )
# progSpot[r, ] <- prepareBestObjectiveVal(sol$y, 2*funEvals)
# }
#
# matplot(t(progSpot), type="l", col="red", lty=1, xlab="n: blackbox evaluations", ylab="best objective value", log="y")
# abline(v=size, lty=2)
#
# save(progSpot, file=FILENAME)
## ----plot50_100, eval = FALSE-------------------------------------------------
# #pdf("experiment1.pdf")
# load("~/workspace/SPOT/vignettes/experiment9_50.RData")
# res50 <- progSpot
# load("~/workspace/SPOT/vignettes/experiment9_100.RData")
# res100 <- progSpot
# load("~/workspace/SPOT/vignettes/experiment9_150.RData")
# res150 <- progSpot
# {
# matplot(t(res150), type="l", col="red", lty=1, xlab="n: blackbox evaluations", ylab="best objective value", log="y")
# matlines(t(res100), type="l", col="blue", lty=1)
# matlines(t(res50), type="l", col="gray", lty=1)
# legend("topright", c("res100", "res50"), col=c("red", "grey"), lty=1, bty="n")
# }
# #dev.off()
## ----compBox, eval=FALSE------------------------------------------------------
# load("~/workspace/SPOT/vignettes/experiment9_50.RData")
# res50 <- progSpot
# load("~/workspace/SPOT/vignettes/experiment9_100.RData")
# res100 <- progSpot
# load("~/workspace/SPOT/vignettes/experiment9_150.RData")
# res150 <- progSpot
# ySpot50 <- res50[,ncol(res50)]
# ySpot100 <- res100[,ncol(res100)]
# ySpot150 <- res150[,ncol(res150)]
# boxplot(ySpot50, ySpot100, ySpot150)
## ----compMean, eval=FALSE-----------------------------------------------------
# yMeanSpot50 <-apply(res50, 2,mean)
# yMeanSpot100<-apply(res100, 2,mean)
# yMeanSpot150<-apply(res150, 2,mean)
#
#
# x<-1:length(yMeanSpot50)
# {
# plot(x, yMeanSpot150, type ="l")
# lines(x, yMeanSpot100, type ="l", col = "red")
# lines(x, yMeanSpot50, type ="l", col = "blue")
# }
#
# # library("Hmisc")
# #
# # ySdSpot<-apply(progSpot, 2, sd)
# # ySdSpotHyb<-apply(progSpotHyb, 2, sd)
# # errbar(x, yMeanSpot, yMeanSpot - ySdSpot, yMeanSpot + ySdSpot )
# #
# # errbar(x, yMeanSpotHyb, yMeanSpotHyb - ySdSpotHyb, yMeanSpotHyb + ySdSpotHyb )
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.