View source: R/funKerasMnist.R
| evalKerasMnist | R Documentation |
Hyperparameter Tuning: Keras MNIST Classification Test Function.
evalKerasMnist(x, kerasConf, data)
x |
matrix of hyperparameter values to evaluate with the function. Rows for points and columns for dimension. |
kerasConf |
List of additional parameters passed to keras as described in |
data |
mnist data set. Default: |
Trains a simple deep NN on the MNIST dataset. Standard Code from https://tensorflow.rstudio.com/ Modified by T. Bartz-Beielstein (tbb@bartzundbartz.de)
list with function values (training, validation, and test loss/accuracy, and keras model information)
getKerasConf
funKerasMnist
fit
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
library("SPOTMisc")
kerasConf <- getKerasConf()
kerasConf$verbose <- 1
kerasConf$model <- "dl"
cfg <- getModelConf(kerasConf)
x <- matrix(cfg$default, nrow=1)
if (length(cfg$transformations) > 0) { x <- transformX(xNat=x, fn=cfg$transformations)}
res <- evalKerasMnist(x, kerasConf, data = getMnistData(kerasConf))
#
kerasConf$model <- "cnn"
kerasConf$encoding <- "tensor"
cfg <- getModelConf(kerasConf)
x <- matrix(cfg$default, nrow=1)
if (length(cfg$transformations) > 0) { x <- transformX(xNat=x, fn=cfg$transformations)}
res <- evalKerasMnist(x, kerasConf, data = getMnistData(kerasConf))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.