View source: R/mapParameters.R
| mapX2FLAGS | R Documentation |
numerical parameters are mapped to their meanings, e.g.,
x[1] to "dropout rate".
mapX2FLAGS(x, model = "dl")
x |
matrix input values. |
model |
(char) network type, e.g., |
For a "dl" network, the parameter vector x is mapped
to the following FLAGS:
x[1]: dropoutdropout rate first layer.
x[2]: dropoutfacdropout factor (multiplier).
x[3]: unitsnumber of units in the first layer.
x[4]: unitsfactunits factor (multiplier).
x[5]: learning_ratelearning rate for optimizer. See, e.g.: link{optimizer_sgd}
x[6]: epochsnumber of training epochs.
x[7]: beta_1The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1. Generally close to 1.
x[8]: beta_2The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1. Generally close to 1.
x[9]: layersnumber of layers.
x[10]: epsilonfloat >= 0. Fuzz factor. If NULL, defaults to k_epsilon().
x[11]: optimizerinteger. Specifies optimizer.
FLAGS named list (parameter names as specified in getModelConf), e.g.,
for "dl": dropout, dropoutfac, units, unitsfact, learning_rate,
epochs, beta_1, beta_2, layers, epsilon, optimizer
## First example: dense neural net x <- getModelConf(list(model="dl"))$defaults mapX2FLAGS(x=x, model = "dl") ## Second example: convnet x <- getModelConf(list(model="cnn"))$defaults mapX2FLAGS(x=x, model = "cnn")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.