View source: R/mapParameters.R
mapX2FLAGS | R Documentation |
numerical parameters are mapped to their meanings, e.g.,
x[1]
to "dropout rate"
.
mapX2FLAGS(x, model = "dl")
x |
matrix input values. |
model |
(char) network type, e.g., |
For a "dl"
network, the parameter vector x
is mapped
to the following FLAGS
:
x[1]: dropout
dropout rate first layer.
x[2]: dropoutfac
dropout factor (multiplier).
x[3]: units
number of units in the first layer.
x[4]: unitsfact
units factor (multiplier).
x[5]: learning_rate
learning rate for optimizer. See, e.g.: link{optimizer_sgd}
x[6]: epochs
number of training epochs.
x[7]: beta_1
The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1. Generally close to 1.
x[8]: beta_2
The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1. Generally close to 1.
x[9]: layers
number of layers.
x[10]: epsilon
float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().
x[11]: optimizer
integer. Specifies optimizer.
FLAGS named list (parameter names as specified in getModelConf
), e.g.,
for "dl": dropout, dropoutfac, units, unitsfact, learning_rate,
epochs, beta_1, beta_2, layers, epsilon, optimizer
## First example: dense neural net x <- getModelConf(list(model="dl"))$defaults mapX2FLAGS(x=x, model = "dl") ## Second example: convnet x <- getModelConf(list(model="cnn"))$defaults mapX2FLAGS(x=x, model = "cnn")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.