View source: R/funKerasGeneric.R
| genericDataPrep | R Documentation |
Create an input pipeline using tfdatasets
genericDataPrep( data, batch_size = 32, minLevelSizeEmbedding = 100, embeddingDim = NULL )
data |
data. List, e.g., df$trainCensus, df$testGeneric, and df$valCensus data) |
batch_size |
batch size. Default: 32 |
minLevelSizeEmbedding |
integer. Embedding will be used for
factor variables with more than |
embeddingDim |
integer. Dimension used for embedding. Default: |
a fitted FeatureSpec object and the hold-out testGeneric (=data$testGeneric).
This is returned as the follwoing list.
train_ds_generictrain
val_ds_genericvalidation
test_ds_generictest
specGeneric_prepfeature spec object
testGenericdata$testGeneric
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
target <- "age"
batch_size <- 32
prop <- 2/3
cachedir <- "oml.cache"
dfCensus <- getDataCensus(target = target,
nobs = 1000, cachedir = cachedir, cache.only=FALSE)
data <- getGenericTrainValTestData(dfGeneric = dfCensus,
prop = prop)
specList <- genericDataPrep(data=data, batch_size = batch_size)
## Call iterator:
require(magrittr)
specList$train_ds_generic %>%
reticulate::as_iterator() %>%
reticulate::iter_next()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.