View source: R/funKerasGeneric.R
genericDataPrep | R Documentation |
Create an input pipeline using tfdatasets
genericDataPrep( data, batch_size = 32, minLevelSizeEmbedding = 100, embeddingDim = NULL )
data |
data. List, e.g., df$trainCensus, df$testGeneric, and df$valCensus data) |
batch_size |
batch size. Default: 32 |
minLevelSizeEmbedding |
integer. Embedding will be used for
factor variables with more than |
embeddingDim |
integer. Dimension used for embedding. Default: |
a fitted FeatureSpec
object and the hold-out testGeneric (=data$testGeneric).
This is returned as the follwoing list.
train_ds_generic
train
val_ds_generic
validation
test_ds_generic
test
specGeneric_prep
feature spec object
testGeneric
data$testGeneric
### These examples require an activated Python environment as described in ### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.: ### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT, ### June 2021. http://arxiv.org/abs/2105.14625. PYTHON_RETICULATE <- FALSE if(PYTHON_RETICULATE){ target <- "age" batch_size <- 32 prop <- 2/3 cachedir <- "oml.cache" dfCensus <- getDataCensus(target = target, nobs = 1000, cachedir = cachedir, cache.only=FALSE) data <- getGenericTrainValTestData(dfGeneric = dfCensus, prop = prop) specList <- genericDataPrep(data=data, batch_size = batch_size) ## Call iterator: require(magrittr) specList$train_ds_generic %>% reticulate::as_iterator() %>% reticulate::iter_next() }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.