View source: R/kerasOptimizer.R
optimizer_rmsprop | R Documentation |
RMSProp optimizer
optimizer_rmsprop( learning_rate = 0.001, rho = 0.9, epsilon = NULL, decay = 0, clipnorm = NULL, clipvalue = NULL, ... )
learning_rate |
float >= 0. Learning rate. |
rho |
float >= 0. Decay factor. |
epsilon |
float >= 0. Fuzz factor. If 'NULL', defaults to 'k_epsilon()'. |
decay |
float >= 0. Learning rate decay over each update. |
clipnorm |
Gradients will be clipped when their L2 norm exceeds this value. |
clipvalue |
Gradients will be clipped when their absolute value exceeds this value. |
... |
Unused, present only for backwards compatability |
This optimizer is usually a good choice for recurrent neural networks.
Other optimizers:
optimizer_adadelta()
,
optimizer_adagrad()
,
optimizer_adamax()
,
optimizer_adam()
,
optimizer_nadam()
,
optimizer_sgd()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.