optimizer_rmsprop: RMSProp optimizer

View source: R/kerasOptimizer.R

optimizer_rmspropR Documentation

RMSProp optimizer

Description

RMSProp optimizer

Usage

optimizer_rmsprop(
  learning_rate = 0.001,
  rho = 0.9,
  epsilon = NULL,
  decay = 0,
  clipnorm = NULL,
  clipvalue = NULL,
  ...
)

Arguments

learning_rate

float >= 0. Learning rate.

rho

float >= 0. Decay factor.

epsilon

float >= 0. Fuzz factor. If 'NULL', defaults to 'k_epsilon()'.

decay

float >= 0. Learning rate decay over each update.

clipnorm

Gradients will be clipped when their L2 norm exceeds this value.

clipvalue

Gradients will be clipped when their absolute value exceeds this value.

...

Unused, present only for backwards compatability

Note

This optimizer is usually a good choice for recurrent neural networks.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(), optimizer_sgd()


SPOTMisc documentation built on Sept. 5, 2022, 5:06 p.m.