| getModelConf | R Documentation |
Configure machine and deep learning models
getModelConf( modelArgs = NULL, model, task.type = NULL, nFeatures = NULL, active = NULL )
modelArgs |
list with information about model, active variables etc. Note:
|
model |
machine or deep learning model (character). One of the following:
. |
task.type |
character, either |
nFeatures |
number of features, e.g., |
active |
vector of activated tunepars, e.g., |
Returns returns a list of the machine learning model configuration and corresponding hyperparameters:
learnercharacter: combination of task.type and model name.
lowervector of lower bounds.
uppervector of upper bounds.
fixparslist of fixed parameters.
factorlevelslist of factor levels.
transformationsvector of transformations.
dummylogical. Use dummy encoding, e.g., xgb.train
relparslist of relative hyperparameters.
# Get hyperparameter names and their defaults for fitting a
# (recursive partitioning and regression trees) model:
modelArgs <- list(model = "rpart")
cfg <- getModelConf(modelArgs)
cfg$tunepars
cfg$defaults
## do not use anymore:
cfg <- getModelConf(model="rpart")
cfg$tunepars
cfg$defaults
modelArgs <- list(model="rpart", active = c("minsplit", "maxdepth"))
cfgAct <- getModelConf(modelArgs)
cfgAct$tunepars
cfgAct$defaults
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.