getModelConf | R Documentation |
Configure machine and deep learning models
getModelConf( modelArgs = NULL, model, task.type = NULL, nFeatures = NULL, active = NULL )
modelArgs |
list with information about model, active variables etc. Note:
|
model |
machine or deep learning model (character). One of the following:
. |
task.type |
character, either |
nFeatures |
number of features, e.g., |
active |
vector of activated tunepars, e.g., |
Returns returns a list of the machine learning model configuration and corresponding hyperparameters:
learner
character: combination of task.type and model name.
lower
vector of lower bounds.
upper
vector of upper bounds.
fixpars
list of fixed parameters.
factorlevels
list of factor levels.
transformations
vector of transformations.
dummy
logical. Use dummy encoding, e.g., xgb.train
relpars
list of relative hyperparameters.
# Get hyperparameter names and their defaults for fitting a # (recursive partitioning and regression trees) model: modelArgs <- list(model = "rpart") cfg <- getModelConf(modelArgs) cfg$tunepars cfg$defaults ## do not use anymore: cfg <- getModelConf(model="rpart") cfg$tunepars cfg$defaults modelArgs <- list(model="rpart", active = c("minsplit", "maxdepth")) cfgAct <- getModelConf(modelArgs) cfgAct$tunepars cfgAct$defaults
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.