View source: R/funKerasMnist.R
| getMnistData | R Documentation | 
Based on the setting kerasConf$encoding either one-hot encoded data or
tensor-shaped data are returned.The labels are converted to binary class matrices using
the function to_categorical.
getMnistData(kerasConf)
| kerasConf | List of additional parameters passed to keras as described
in  | 
list with training and test data, i.e.,
list(x_train, x_test, y_train, y_test).
getKerasConf
funKerasMnist
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
library("SPOTMisc")
kerasConf <- getKerasConf()
kerasConf$encoding <- "oneHot" # default
mnist <- getMnistData(kerasConf)
# lots of zeros, but there are also some nonzero (greyscale) values, e.g.:
mnist$x_train[1,150:160]
str(mnist$x_train[1,])
# y-labels are one-hot encoded. The first entry represents "5"
mnist$y_train[1,]
##
kerasConf$encoding <- "tensor"
mnist <- getMnistData(kerasConf)
## 28x28:
str(mnist$x_train[1,,,])
mnist$y_train[1,]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.