View source: R/kerasOptimizer.R
optimizer_adam | R Documentation |
Adam optimizer as described in [Adam - A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980v8).
optimizer_adam( learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = NULL, decay = 0, amsgrad = FALSE, clipnorm = NULL, clipvalue = NULL, ... )
learning_rate |
float >= 0. Learning rate. |
beta_1 |
The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1. Generally close to 1. |
beta_2 |
The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1. Generally close to 1. |
epsilon |
float >= 0. Fuzz factor. If 'NULL', defaults to 'k_epsilon()'. |
decay |
float >= 0. Learning rate decay over each update. |
amsgrad |
Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". |
clipnorm |
Gradients will be clipped when their L2 norm exceeds this value. |
clipvalue |
Gradients will be clipped when their absolute value exceeds this value. |
... |
Unused, present only for backwards compatability |
- [Adam - A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980v8) - [On the Convergence of Adam and Beyond](https://openreview.net/forum?id=ryQu7f-RZ)
Default parameters follow those provided in the original paper.
Other optimizers:
optimizer_adadelta()
,
optimizer_adagrad()
,
optimizer_adamax()
,
optimizer_nadam()
,
optimizer_rmsprop()
,
optimizer_sgd()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.