Nothing
get_model_stats_glm <- function(cov_est_object, data_object, estmethod) {
cov_matrix_list <- get_cov_matrix_list(cov_est_object$params_object, data_object)
# find model components
X <- do.call("rbind", data_object$X_list)
y <- do.call("rbind", data_object$y_list)
# eigen products (put back when local impelmented)
# if (data_object$parallel) {
# cluster_list <- lapply(seq_along(cov_matrix_list), function(l) {
# cluster_list_element <- list(
# c = cov_matrix_list[[l]],
# x = data_object$X_list[[l]],
# y = data_object$y_list[[l]],
# o = data_object$ones_list[[l]]
# )
# })
# eigenprods_list <- parallel::parLapply(data_object$cl, cluster_list, get_eigenprods_glm_parallel)
# names(eigenprods_list) <- names(cov_matrix_list)
# } else {
# eigenprods_list <- mapply(
# c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list, o = data_object$ones_list,
# function(c, x, y, o) get_eigenprods_glm(c, x, y, o),
# SIMPLIFY = FALSE
# )
# }
eigenprods_list <- mapply(
c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list, o = data_object$ones_list,
function(c, x, y, o) get_eigenprods_glm(c, x, y, o),
SIMPLIFY = FALSE
)
SigInv_list <- lapply(eigenprods_list, function(x) x$SigInv)
SigInv <- Matrix::bdiag(SigInv_list)
SigInv_X <- do.call("rbind", lapply(eigenprods_list, function(x) x$SigInv_X))
# get inverse cov beta hat list and add together
invcov_betahat_list <- lapply(eigenprods_list, function(x) crossprod(x$SqrtSigInv_X, x$SqrtSigInv_X))
invcov_betahat_sum <- Reduce("+", invcov_betahat_list)
# find unadjusted cov beta hat matrix
cov_betahat_noadjust <- chol2inv(chol(forceSymmetric(invcov_betahat_sum)))
# put it in a list the number of times there are unique local indices
cov_betahat_noadjust_list <- rep(list(cov_betahat_noadjust), times = length(invcov_betahat_list))
# dispersion
dispersion <- as.vector(cov_est_object$params_object$dispersion)
# newton rhapson
w_and_H <- get_w_and_H(data_object, dispersion,
SigInv_list, SigInv_X, cov_betahat_noadjust,
invcov_betahat_sum, estmethod,
ret_mHInv = TRUE
)
w <- as.vector(w_and_H$w)
# H <- w_and_H$H
# put w in eigenprods
w_list <- split(w, sort(data_object$local_index))
Xt_SigInv_w_list <- mapply(
x = eigenprods_list, w = w_list,
function(x, w) crossprod(x$SigInv_X, w),
SIMPLIFY = FALSE
)
betahat_list <- mapply(
l = cov_betahat_noadjust_list, r = Xt_SigInv_w_list,
function(l, r) l %*% r,
SIMPLIFY = FALSE
)
betahat <- as.numeric(cov_betahat_noadjust %*%
Reduce("+", Xt_SigInv_w_list))
names(betahat) <- colnames(data_object$X_list[[1]])
# adjust the global covariance of beta hat (revisit when local implemented)
cov_betahat <- cov_betahat_adjust(
invcov_betahat_list,
betahat_list, betahat,
eigenprods_list, data_object,
cov_est_object$params_object,
cov_betahat_noadjust, data_object$var_adjust
)
cov_betahat <- as.matrix(cov_betahat)
wts_beta <- tcrossprod(cov_betahat, SigInv_X)
betawtsvarw <- wts_beta %*% w_and_H$mHInv %*% t(wts_beta)
cov_betahat_uncorrected <- cov_betahat # save uncorrected cov beta hat
rownames(cov_betahat_uncorrected) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat_uncorrected) <- colnames(data_object$X_list[[1]])
cov_betahat <- as.matrix(cov_betahat + betawtsvarw)
rownames(cov_betahat) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat) <- colnames(data_object$X_list[[1]])
# return fixed and random coefficients
coefficients <- get_coefficients_glm(betahat, cov_est_object$params_object)
# return fitted
fitted <- get_fitted_glm(w_list, betahat, cov_est_object$params_object, data_object, eigenprods_list)
# return hat values
hatvalues <- get_hatvalues_glm(w, X, data_object, dispersion)
# return deviance i
deviance_i <- get_deviance_glm(data_object$family, y, fitted$response, data_object$size, dispersion)
deviance_i <- pmax(deviance_i, 0) # sometimes numerical instability can cause these to be slightly negative
# storing relevant products
SigInv_X_null <- do.call("rbind", lapply(eigenprods_list, function(x) x$SigInv_ones))
## lower chol %*% X
SqrtSigInv_X_null <- do.call("rbind", lapply(eigenprods_list, function(x) x$SqrtSigInv_ones))
# covariance of beta hat
## t(X) %*% sigma_inverse %*% X
Xt_SigInv_X_null <- crossprod(SqrtSigInv_X_null, SqrtSigInv_X_null)
## t(X) %*% sigma_inverse %*% X)^(-1)
Xt_SigInv_X_upchol_null <- chol(Xt_SigInv_X_null)
cov_betahat_null <- chol2inv(Xt_SigInv_X_upchol_null)
# newton rhapson
w_and_H_null <- get_w_and_H(
data_object, dispersion,
SigInv_list, SigInv_X_null, cov_betahat_null, Xt_SigInv_X_null, estmethod
)
w_null <- as.vector(w_and_H_null$w)
fitted_null <- get_fitted_null(w_null, data_object)
# return deviance i
deviance_i_null <- get_deviance_glm(data_object$family, y, fitted_null, data_object$size, dispersion)
deviance_i_null <- pmax(deviance_i_null, 0) # sometimes numerical instability can cause these to be slightly non-negative
deviance <- sum(deviance_i)
deviance_null <- sum(deviance_i_null)
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# should always be non-negative
pseudoR2 <- pmax(0, pseudoR2)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
# return residuals
residuals <- get_residuals_glm(w, y, data_object, deviance_i, hatvalues, dispersion)
# return cooks distance
cooks_distance <- get_cooks_distance_glm(residuals, hatvalues, data_object$p)
# return variance covariance matrices
vcov <- get_vcov_glm(cov_betahat, cov_betahat_uncorrected) # note first argument is the adjusted one
# reorder relevant quantities to match data order
model_stats_glm_names <- data_object$pid[data_object$observed_index]
## fitted values
fitted$response <- fitted$response[order(data_object$order)]
names(fitted$response) <- model_stats_glm_names
fitted$link <- fitted$link[order(data_object$order)]
names(fitted$link) <- model_stats_glm_names
fitted$tailup <- fitted$tailup[order(data_object$order)]
names(fitted$tailup) <- model_stats_glm_names
fitted$taildown <- fitted$taildown[order(data_object$order)]
names(fitted$taildown) <- model_stats_glm_names
fitted$euclid <- fitted$euclid[order(data_object$order)]
names(fitted$euclid) <- model_stats_glm_names
fitted$nugget <- fitted$nugget[order(data_object$order)]
names(fitted$nugget) <- model_stats_glm_names
## hat values
hatvalues <- hatvalues[order(data_object$order)]
names(hatvalues) <- model_stats_glm_names
## residuals
residuals$response <- residuals$response[order(data_object$order)]
names(residuals$response) <- model_stats_glm_names
residuals$deviance <- residuals$deviance[order(data_object$order)]
names(residuals$deviance) <- model_stats_glm_names
residuals$pearson <- residuals$pearson[order(data_object$order)]
names(residuals$pearson) <- model_stats_glm_names
residuals$standardized <- residuals$standardized[order(data_object$order)]
names(residuals$standardized) <- model_stats_glm_names
## cook's distance
cooks_distance <- cooks_distance[order(data_object$order)]
names(cooks_distance) <- model_stats_glm_names
y <- y[order(data_object$order)]
if (is.null(data_object$size)) {
size <- NULL
} else {
size <- data_object$size[order(data_object$order)]
names(size) <- model_stats_glm_names
}
# return npar (number of estimated covariance parameters)
npar <- sum(unlist(lapply(cov_est_object$is_known, function(x) length(x) - sum(x))))
# return list
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar,
w = w,
y = y, # problems with model.response later if not here
size = size
)
}
get_coefficients_glm <- function(betahat, params_object) {
list(fixed = betahat, params_object = params_object)
}
get_fitted_glm <- function(w_list, betahat, params_object, data_object, eigenprods_list) {
fitted_link <- unname(do.call("c", w_list)) # unlist(w_list, use.names = FALSE)
# add offset
if (!is.null(data_object$offset)) {
fitted_link <- fitted_link + as.vector(data_object$offset)
}
fitted_response <- invlink(fitted_link, data_object$family, data_object$size)
SigInv_r_list <- mapply(
x = eigenprods_list, w = w_list, function(x, w) x$SigInv %*% as.matrix(w, ncol = 1) - x$SigInv_X %*% betahat,
SIMPLIFY = FALSE
)
# find tailup fitted values (NULL if not used)
tailup_none <- inherits(params_object$tailup, "tailup_none")
if (tailup_none) {
fitted_tailup <- NULL
} else {
tailup_list <- lapply(data_object$dist_object_oblist, function(x) cov_matrix(params_object$tailup, x))
fitted_tailup <- as.numeric(do.call("rbind", mapply(
s = tailup_list, r = SigInv_r_list,
function(s, r) s %*% r, SIMPLIFY = FALSE
)))
}
# find taildown fitted values (NULL if not used)
taildown_none <- inherits(params_object$taildown, "taildown_none")
if (taildown_none) {
fitted_taildown <- NULL
} else {
taildown_list <- lapply(data_object$dist_object_oblist, function(x) cov_matrix(params_object$taildown, x))
fitted_taildown <- as.numeric(do.call("rbind", mapply(
s = taildown_list, r = SigInv_r_list,
function(s, r) s %*% r, SIMPLIFY = FALSE
)))
}
# find euclid fitted values (NULL if not used)
euclid_none <- inherits(params_object$euclid, "euclid_none")
if (euclid_none) {
fitted_euclid <- NULL
} else {
euclid_list <- lapply(data_object$dist_object_oblist, function(x) cov_matrix(params_object$euclid, x, data_object$anisotropy))
fitted_euclid <- as.numeric(do.call("rbind", mapply(
s = euclid_list, r = SigInv_r_list,
function(s, r) s %*% r, SIMPLIFY = FALSE
)))
}
# find nugget fitted values (NULL if not used)
nugget_none <- inherits(params_object$nugget, "nugget_none")
if (nugget_none) {
fitted_nugget <- NULL
} else {
fitted_nugget <- as.numeric(params_object$nugget[["nugget"]] * do.call("rbind", SigInv_r_list))
}
# find random effect fitted values (NULL if not used)
if (is.null(names(params_object$randcov))) {
fitted_randcov <- NULL
} else {
fitted_randcov <- lapply(names(params_object$randcov), function(x) {
fitted_val <- params_object$randcov[[x]] * do.call("rbind", mapply(
z = data_object$randcov_list,
r = SigInv_r_list,
function(z, r) {
crossprod(z[[x]][["Z"]], r)
}
))
fitted_val <- tapply(fitted_val, rownames(fitted_val), function(x) {
val <- mean(x[x != 0])
if (length(val) == 0) { # replace if all zeros somehow
val <- rep(0, length(x))
names(val) <- names(x)
}
val
})
# all combinations yields values with many zeros -- don't want to include these in the mean
names_fitted_val <- rownames(fitted_val)
fitted_val <- as.numeric(fitted_val)
names(fitted_val) <- names_fitted_val
fitted_val
})
names(fitted_randcov) <- names(params_object$randcov)
}
# return all as list
fitted_values <- list(
response = as.numeric(fitted_response),
link = as.numeric(fitted_link),
tailup = as.numeric(fitted_tailup),
taildown = as.numeric(fitted_taildown),
euclid = as.numeric(fitted_euclid),
nugget = as.numeric(fitted_nugget),
randcov = fitted_randcov
)
}
get_fitted_null <- function(w, data_object) {
fitted_link <- as.numeric(w)
# add offset
if (!is.null(data_object$offset)) {
fitted_link <- fitted_link + data_object$offset
}
# fitted_link
fitted_response <- invlink(fitted_link, data_object$family, data_object$size)
}
invlink <- function(fitted_link, family, size) {
if (family == "poisson") {
fitted <- exp(fitted_link)
} else if (family == "binomial") {
if (is.null(size)) size <- 1
fitted <- size * expit(fitted_link)
} else if (family == "nbinomial") {
fitted <- exp(fitted_link)
} else if (family == "Gamma") {
# fitted <- 1 / fitted_link
fitted <- exp(fitted_link)
} else if (family == "inverse.gaussian") {
fitted <- exp(fitted_link)
} else if (family == "beta") {
fitted <- expit(fitted_link)
}
fitted
}
get_hatvalues_glm <- function(w, X, data_object, dispersion) {
# the hat matrix of the whitened residuals
V <- get_V(w, data_object$family, data_object$size, dispersion)
SqrtVInv_X <- sqrt(V) * X # same as diag(sqrt(V)) %*% X
cov_vhat <- chol2inv(chol(Matrix::forceSymmetric(crossprod(SqrtVInv_X, SqrtVInv_X))))
hatvalues <- diag(SqrtVInv_X %*% tcrossprod(cov_vhat, SqrtVInv_X))
if (any(hatvalues > 0.999)) {
hatvalues_sum <- sum(hatvalues)
hatvalues[hatvalues > 0.999] <- 0.999
hatvalues <- hatvalues * (hatvalues_sum / sum(hatvalues))
}
as.numeric(hatvalues)
}
get_V <- function(w, family, size, dispersion) {
# V = (1 / dispersion) * (dmu / deta)^2 * (V(mu))
# when canonical link used, dmu / deta = dmu / dtheta = V(mu)
# so V = (1 / dispersion) * V(mu)
# V is such that cov(betahat) = (XtVX/dispersion)^{-1}
# and hence V^{-1}dispersion = Sigma used in fitting
# but V equals var(y) when dispersion is one
if (family == "poisson") {
mu <- exp(w)
V <- mu
} else if (family == "binomial") {
mu <- expit(w)
V <- size * mu * (1 - mu)
} else if (family == "nbinomial") {
mu <- exp(w)
V <- mu / (1 + (mu / dispersion)) # from Ver Hoef and Boveng 2007
} else if (family == "Gamma") {
mu <- exp(w)
V <- mu^2
} else if (family == "inverse.gaussian") {
mu <- exp(w)
V <- mu^3
} else if (family == "beta") {
mu <- expit(w)
V <- mu * (1 - mu)
}
V
}
get_var_y <- function(w, family, size, dispersion) {
# var(y) = dispersion * var(mu)
# when dispersion = 1, var(y) = var(mu)
if (family == "poisson") {
var_y <- get_V(w, family, size, dispersion)
} else if (family == "binomial") {
var_y <- get_V(w, family, size, dispersion)
} else if (family == "nbinomial") {
mu <- exp(w)
var_y <- mu + mu^2 / dispersion
} else if (family == "Gamma") {
dispersion_true <- 1 / dispersion
var_y <- get_V(w, family, size, dispersion) * dispersion_true
} else if (family == "inverse.gaussian") {
mu <- exp(w)
dispersion_true <- 1 / (mu * dispersion)
var_y <- get_V(w, family, size, dispersion) * dispersion_true
} else if (family == "beta") {
dispersion_true <- 1 / (1 + dispersion)
var_y <- get_V(w, family, size, dispersion) * dispersion_true
}
var_y
}
get_deviance_glm <- function(family, y, fitted_response, size, dispersion) {
# if (!is.null(offset)) {
# fitted_link <- fitted_link + offset # undo w = w - offset for deviance to match glm
# }
# fitted_response <- invlink(fitted_link, family, size)
# faraway p 157
# y <- pmax(y, 1e-8) # so deviance Inf is not calculated
if (family == "poisson") {
half_deviance_i <- ifelse(y == 0, 0, y * log(y / fitted_response)) - (y - fitted_response)
# half_deviance_i <- y * pmax(-1e10, log(y / fitted_response)) - (y - fitted_response)
} else if (family == "binomial") {
half_deviance_i <- ifelse(y == 0, 0, y * log(y / fitted_response)) +
ifelse(size - y == 0, 0, (size - y) * log((size - y) / (size - fitted_response)))
} else if (family == "nbinomial") {
# hand derived
half_deviance_i <- ifelse(y == 0, 0, y * (log(y / (y + dispersion)) - log(fitted_response / (fitted_response + dispersion)))) +
dispersion * (log(fitted_response + dispersion) - log(y + dispersion))
} else if (family == "Gamma") {
half_deviance_i <- -log(y / fitted_response) + (y - fitted_response) / fitted_response
} else if (family == "inverse.gaussian") {
half_deviance_i <- 0.5 * (y - fitted_response)^2 / (y * fitted_response^2)
} else if (family == "beta") {
constant <- log(gamma(fitted_response * dispersion)) + log(gamma((1 - fitted_response) * dispersion)) - log(gamma(y * dispersion)) - log(gamma((1 - y) * dispersion))
half_deviance_i <- constant + (y - fitted_response) * dispersion * log(y) + ((1 - y) - (1 - fitted_response)) * dispersion * log(1 - y)
}
deviance_i <- 2 * half_deviance_i
as.numeric(deviance_i)
}
get_residuals_glm <- function(w, y, data_object, deviance_i, hatvalues, dispersion) {
# add offset
if (!is.null(data_object$offset)) {
w <- w + data_object$offset
}
residuals_response <- y - invlink(w, data_object$family, data_object$size)
residuals_deviance <- sign(residuals_response) * sqrt(deviance_i)
residuals_pearson <- residuals_response / sqrt(get_var_y(w, data_object$family, data_object$size, dispersion))
residuals_standardized <- residuals_deviance / sqrt(1 - hatvalues) # (I - H on bottom)
list(
response = as.numeric(residuals_response), deviance = as.numeric(residuals_deviance),
pearson = as.numeric(residuals_pearson), standardized = as.numeric(residuals_standardized)
)
}
get_cooks_distance_glm <- function(residuals, hatvalues, p) {
residuals$standardized^2 * hatvalues / (p * (1 - hatvalues))
}
get_vcov_glm <- function(cov_betahat_corrected, cov_betahat_uncorrected) {
if (any(diag(cov_betahat_corrected) < 0)) {
warning("Model fit potentially unstable. Consider fixing ie (via spcov_initial) at some non-zero value greater than 1e-4 and refitting the model.", call. = FALSE)
}
vcov_fixed <- list(corrected = cov_betahat_corrected, uncorrected = cov_betahat_uncorrected)
vcov <- list(fixed = vcov_fixed)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.