Nothing
#' Get products involved in Laplace log likelihood (glms)
#'
#' @param params_object Covariance parameter object
#' @param data_object Data object
#' @param estmethod Estimation Method
#'
#' @noRd
laploglik_products <- function(params_object, data_object, estmethod) {
cov_matrix_list <- get_cov_matrix_list(params_object, data_object)
# cholesky products (no local)
if (data_object$parallel) {
cluster_list <- lapply(seq_along(cov_matrix_list), function(l) {
cluster_list_element <- list(
c = cov_matrix_list[[l]],
x = data_object$X_list[[l]],
y = data_object$y_list[[l]]
)
})
cholprods_list <- parallel::parLapply(data_object$cl, cluster_list, get_cholprods_glm_parallel)
names(cholprods_list) <- names(cov_matrix_list)
} else {
cholprods_list <- mapply(
c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list,
function(c, x, y) get_cholprods_glm(c, x, y),
SIMPLIFY = FALSE
)
}
# cholprods_list <- mapply(
# c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list,
# function(c, x, y) get_cholprods_glm(c, x, y),
# SIMPLIFY = FALSE
# )
SigInv_list <- lapply(cholprods_list, function(x) x$SigInv)
SigInv <- Matrix::bdiag(SigInv_list)
SigInv_X <- do.call("rbind", lapply(cholprods_list, function(x) x$SigInv_X))
# storing relevant products
## lower chol %*% X
SqrtSigInv_X <- do.call("rbind", lapply(cholprods_list, function(x) x$SqrtSigInv_X))
## lower chol %*% y
SqrtSigInv_y <- do.call("rbind", lapply(cholprods_list, function(x) x$SqrtSigInv_y))
# covariance of beta hat
## t(X) %*% sigma_inverse %*% X
Xt_SigInv_X <- crossprod(SqrtSigInv_X, SqrtSigInv_X)
## t(X) %*% sigma_inverse %*% X)^(-1)
Xt_SigInv_X_upchol <- chol(Xt_SigInv_X)
cov_betahat <- chol2inv(Xt_SigInv_X_upchol)
# find dispersion
dispersion <- as.vector(params_object$dispersion) # take class away
# newton rhapson
w_and_H <- get_w_and_H(
data_object, dispersion,
SigInv_list, SigInv_X, cov_betahat, Xt_SigInv_X, estmethod
)
w <- w_and_H$w
# H <- w_and_H$H
mHldet <- w_and_H$mHldet
betahat <- tcrossprod(cov_betahat, SigInv_X) %*% w
# reset w after finding betahat
if (!is.null(data_object$offset)) {
w <- w + data_object$offset
}
X <- do.call("rbind", data_object$X_list)
r <- w - X %*% betahat
rt_SigInv_r <- crossprod(r, SigInv) %*% r
# get wolfinger objects
y <- as.vector(do.call("rbind", data_object$y_list))
l00 <- get_l00(data_object$family, w, y, data_object$size, dispersion)
l01 <- mHldet
l1 <- sum(unlist(lapply(cholprods_list, function(x) 2 * sum(log(diag(x$Sig_lowchol))))))
l2 <- as.numeric(rt_SigInv_r)
# returning relevant quantities
if (estmethod == "reml") {
l3 <- 2 * sum(log(diag(Xt_SigInv_X_upchol)))
return(list(l00 = l00, l01 = l01, l1 = l1, l2 = l2, l3 = l3))
}
if (estmethod == "ml") {
return(list(l00 = l00, l01 = l01, l1 = l1, l2 = l2))
}
}
#' Get minus twice the Laplace log likelihood
#'
#' @param laploglik_products Laplace log likelihood products
#' @param data_object Data object
#' @param estmethod Estimation method
#'
#' @noRd
get_minustwolaploglik <- function(laploglik_products, data_object, estmethod) {
if (estmethod == "reml") {
minustwolaploglik <- as.numeric(laploglik_products$l00 + laploglik_products$l01 + laploglik_products$l1 +
laploglik_products$l2 + laploglik_products$l3 +
(data_object$n - data_object$p) * log(2 * pi))
} else if (estmethod == "ml") {
minustwolaploglik <- as.numeric(laploglik_products$l00 + laploglik_products$l01 + laploglik_products$l1 +
laploglik_products$l2 +
data_object$n * log(2 * pi))
}
minustwolaploglik
}
#' Get prediction and hessian of latent effects
#'
#' @param data_object Data object
#' @param dispersion Dispersion parameter
#' @param SigInv_list List of inverse covariance matrices for each block
#' @param SigInv_X Product between inverse covariance matrix and model matrix
#' @param cov_betahat Covariance of fixed effects
#' @param cov_betahat_Inv Inverse covariance of fixed effects (precision)
#' @param estmethod Estimation method
#' @param ret_mHInv Should -(H)^-1 be retained for later use?
#'
#' @noRd
get_w_and_H <- function(data_object, dispersion, SigInv_list, SigInv_X, cov_betahat, cov_betahat_Inv, estmethod, ret_mHInv = FALSE) {
family <- data_object$family
SigInv <- Matrix::bdiag(SigInv_list)
Ptheta <- SigInv - SigInv_X %*% tcrossprod(cov_betahat, SigInv_X)
y <- as.vector(do.call("rbind", data_object$y_list))
size <- data_object$size
w <- get_w_init(family, y, dispersion)
wdiffmax <- Inf
iter <- 0
if (length(SigInv_list) == 1) {
while (iter < 50 && wdiffmax > 1e-4) {
iter <- iter + 1
# if (family %in% c("binomial", "beta")) {
# w <- pmax(pmin(w, 8), -8)
# }
# compute the d vector
d <- get_d(family, w, y, size, dispersion)
# and then the gradient vector
g <- d - Ptheta %*% w
# Next, compute H
D <- get_D(family, w, y, size, dispersion)
H <- D - Ptheta # not PD but -H is
solveHg <- solve(H, g)
wnew <- w - solveHg
# mH_upchol <- chol(Matrix::forceSymmetric(-H))
# solveHg <- backsolve(mH_upchol, forwardsolve(t(mH_upchol), g))
# wnew <- w + solveHg # + because -H is already applied
# check overshoot on loglik surface
dnew <- get_d(family, wnew, y, size, dispersion)
gnew <- dnew - Ptheta %*% wnew
if (any(is.na(gnew) | is.infinite(gnew))) stop("Convergence problem. Try using a different family, removing extreme observations, rescaling the response variable (if continuous), fixing ie at a known, non-zero value (via spcov_initial), or fixing dispersion at one (via dispersion_initial).", call. = FALSE)
if (max(abs(gnew)) > max(abs(g))) wnew <- w - 0.1 * solveHg # + because -H is already applied
# if (max(abs(gnew)) > max(abs(g))) wnew <- w + 0.1 * solveHg
wdiffmax <- max(abs(wnew - w))
# update w
w <- wnew
}
# if (family %in% c("binomial", "beta")) {
# w <- pmax(pmin(w, 8), -8)
# }
mHldet <- as.numeric(determinant(-H, logarithm = TRUE)$modulus)
# mHldet <- 2 * sum(log(diag(mH_upchol)))
w_and_H_list <- list(w = w, H = NULL, mHldet = mHldet)
if (ret_mHInv) {
# not done above because this is only for model stats and solve(H) slower than solve(H, g)
HInv <- solve(H)
w_and_H_list$mHInv <- -HInv
# mHInv <- chol2inv(mH_upchol)
# w_and_H_list$mHInv <- mHInv
}
} else {
# add cov_betahat_Inv stability by same diagonal tolerance as this can have problems too
diag(cov_betahat_Inv) <- diag(cov_betahat_Inv) + data_object$diagtol
while (iter < 50 && wdiffmax > 1e-4) {
iter <- iter + 1
# compute the d vector
d <- get_d(family, w, y, size, dispersion)
# and then the gradient vector
g <- d - Ptheta %*% w
# Next, compute H
D <- get_D(family, w, y, size, dispersion)
D_diag <- diag(D)
D_list <- lapply(split(D_diag, sort(data_object$local_index)), function(x) Diagonal(x = x))
# cholesky products (while local not implemented)
if (data_object$parallel) {
cluster_list <- lapply(seq_along(D_list), function(l) {
cluster_list_element <- list(
D = D_list[[l]],
S = SigInv_list[[l]]
)
})
DSigInv_list <- parallel::parLapply(data_object$cl, cluster_list, get_DSigInv_parallel)
names(DSigInv_list) <- names(D_list)
} else {
DSigInv_list <- mapply(
D = D_list, S = SigInv_list,
function(D, S) get_DSigInv(D, S),
SIMPLIFY = FALSE
)
}
# DSigInv_list <- mapply(
# D = D_list, S = SigInv_list,
# function(D, S) get_DSigInv(D, S),
# SIMPLIFY = FALSE
# )
# while local not impelmented
if (data_object$parallel) {
cluster_list <- DSigInv_list
DSigInv_Inv_list <- parallel::parLapply(data_object$cl, cluster_list, solve)
names(DSigInv_Inv_list) <- names(D_list)
} else {
DSigInv_Inv_list <- lapply(DSigInv_list, function(x) solve(x))
}
# DSigInv_Inv_list <- lapply(DSigInv_list, function(x) solve(x))
DSigInv_Inv <- Matrix::bdiag(DSigInv_Inv_list)
HInv <- smw_HInv(AInv = DSigInv_Inv, U = SigInv_X, CInv = cov_betahat_Inv)
solveHg <- HInv %*% g
wnew <- w - solveHg
# check overshoot on loglik surface
dnew <- get_d(family, wnew, y, size, dispersion)
gnew <- dnew - Ptheta %*% wnew
if (any(is.na(gnew) | is.infinite(gnew))) stop("Convergence problem. Try using a different family, removing extreme observations, rescaling the response variable (if continuous), fixing ie at a known, non-zero value (via spcov_initial), or fixing dispersion at one (via dispersion_initial).", call. = FALSE)
if (max(abs(gnew)) > max(abs(g))) wnew <- w - 0.1 * solveHg
wdiffmax <- max(abs(wnew - w))
# update w
w <- wnew
}
mHldet <- smw_mHldet(A_list = DSigInv_list, AInv = DSigInv_Inv, U = SigInv_X, C = cov_betahat, CInv = cov_betahat_Inv)
w_and_H_list <- list(w = w, H = NULL, mHldet = mHldet)
if (ret_mHInv) {
w_and_H_list$mHInv <- -HInv
}
}
# handle offset
if (!is.null(data_object$offset)) {
w_and_H_list$w <- w_and_H_list$w - data_object$offset
}
w_and_H_list
}
#' Get the gradient of w (called d)
#'
#' @param family The glm family
#' @param w The latent effect (link mean)
#' @param y The response
#' @param size Number of trails (for binomial response)
#' @param dispersion Dispersion parameter
#'
#' @noRd
get_d <- function(family, w, y, size, dispersion) {
if (family == "poisson") {
d <- -exp(w) + y
} else if (family == "nbinomial") {
d <- dispersion * (y - exp(w)) / (dispersion + exp(w))
} else if (family == "binomial") {
d <- y - size * expit(w)
} else if (family == "Gamma") {
d <- -dispersion + dispersion * y * exp(-w)
} else if (family == "inverse.gaussian") {
# d <- 1 / dispersion * (y - exp(w)) / exp(2 * w)
d <- dispersion * (y / (2 * exp(w)) - exp(w) / (2 * y)) + 1 / 2
} else if (family == "beta") {
one_expw <- 1 + exp(w)
k0 <- digamma(dispersion * exp(w) / one_expw) - digamma(dispersion / one_expw) + log(1 / y - 1)
d <- -dispersion * exp(w) * k0 / one_expw^2
}
d
}
#' Get the Hessian of w (called D)
#'
#' @param family The glm family
#' @param w The latent effect (link mean)
#' @param y The response
#' @param size Number of trails (for binomial response)
#' @param dispersion Dispersion parameter
#'
#' @noRd
get_D <- function(family, w, y, size, dispersion) {
w <- as.vector(w)
if (family == "poisson") {
D_vec <- -exp(w)
} else if (family == "nbinomial") {
D_vec <- -(dispersion * exp(w) * (dispersion + y)) / ((dispersion + exp(w))^2)
} else if (family == "binomial") {
D_vec <- -size * expit(w) / (1 + exp(w))
} else if (family == "Gamma") {
D_vec <- -dispersion * y * exp(-w)
} else if (family == "inverse.gaussian") {
# D_vec <- 1 / dispersion * (exp(w) - 2 * y) / exp(2 * w)
D_vec <- -dispersion * (exp(2 * w) + y^2) / (2 * y * exp(w))
} else if (family == "beta") {
one_expw <- 1 + exp(w)
k0 <- digamma(dispersion * exp(w) / one_expw) - digamma(dispersion / one_expw) + log(1 / y - 1)
k1 <- dispersion * (trigamma(dispersion * exp(w) / one_expw) + trigamma(dispersion / one_expw)) - 2 * sinh(w) * (k0 + 2 * atanh(1 - 2 * y))
D_vec <- -dispersion * exp(2 * w) * k1 / one_expw^4
}
D <- Diagonal(x = D_vec)
}
#' Get initial values for w
#'
#' @param w The latent effect (link mean)
#' @param y The response
#' @param dispersion Dispersion parameter
#'
#' @noRd
get_w_init <- function(family, y, dispersion) {
if (family == "poisson") {
w_init <- 0.5 * log(y + 1)
} else if (family == "nbinomial") {
w_init <- 0.5 * log(y + 1)
} else if (family == "binomial") {
w_init <- rep(0, times = length(y))
} else if (family == "Gamma") {
w_init <- 0.5 * log(y + 1)
} else if (family == "inverse.gaussian") {
w_init <- 0.5 * log(y + 1)
} else if (family == "beta") {
w_init <- rep(0, times = length(y))
}
w_init
}
#' Get glm distribution piece of Laplace log likelihood
#'
#' @param family The glm family
#' @param w The latent effect (link mean)
#' @param y The response
#' @param size Number of trails (for binomial response)
#' @param dispersion Dispersion parameter
#'
#' @noRd
get_l00 <- function(family, w, y, size, dispersion) {
w <- as.vector(w)
y <- as.vector(y)
# -2 is for -2ll constant
if (family == "poisson") {
mu <- exp(w)
l00 <- -2 * sum(dpois(y, lambda = mu, log = TRUE))
} else if (family == "nbinomial") {
mu <- exp(w)
l00 <- -2 * sum(dnbinom(x = y, mu = mu, size = dispersion, log = TRUE))
} else if (family == "binomial") {
mu <- expit(w)
l00 <- -2 * sum(dbinom(y, size, mu, log = TRUE))
} else if (family == "Gamma") {
mu <- exp(w)
# disp_recip <- 1 / dispersion
# l00 <- -2 * sum(dgamma(y, shape = disp_recip, scale = dispersion * mu, log = TRUE))
l00 <- -2 * sum(dgamma(y, shape = dispersion, scale = mu / dispersion, log = TRUE))
} else if (family == "inverse.gaussian") {
mu <- exp(w)
# disp_recip <- 1 / dispersion
# l00 <- -2 * sum((log(disp_recip) - log(2 * pi) - 3 * log(y)) / 2 - (disp_recip * (y - mu)^2 / (2 * y * mu^2)))
l00 <- -2 * sum(1 / 2 * (log(dispersion) + log(exp(w)) - log(2 * pi) - log(y^3)) - dispersion * (y - exp(w))^2 / (2 * exp(w) * y))
} else if (family == "beta") {
mu <- expit(w)
a <- mu * dispersion
b <- (1 - mu) * dispersion
l00 <- -2 * sum(dbeta(x = y, shape1 = a, shape2 = b, log = TRUE))
}
l00
}
smw_HInv <- function(AInv, U, CInv) {
mid <- CInv + t(U) %*% AInv %*% U
# solve_mid <- tryCatch(solve(mid), error = function(e) {
# diag(mid) <- diag(mid) + 1e-4 # inverse stability
# solve(mid)
# })
# diag(mid) <- diag(mid) + 1e-4
# if (all(mid == 0)) diag(mid) <- diag(mid) + 1e-4
AInv - (AInv %*% U) %*% solve(mid) %*% (t(U) %*% AInv)
}
smw_mHldet <- function(A_list, AInv, U, C, CInv) {
Aldet <- sum(unlist(lapply(A_list, function(x) determinant(x, logarithm = TRUE)$modulus))) # must be positive det for -H
Cldet <- 2 * sum(log(diag(t(chol(C)))))
mid <- CInv + t(U) %*% AInv %*% U
# diag(mid) <- diag(mid) + 1e-4
midldet <- determinant(mid, logarithm = TRUE)$modulus
as.numeric(Aldet + Cldet + midldet)
}
get_DSigInv <- function(D, SigInv) {
D - SigInv
}
get_DSigInv_parallel <- function(cluster_list) {
D <- cluster_list$D
S <- cluster_list$S
get_DSigInv(D, S)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.