Nothing
#' @title Calculate Intermediate MVN Correlation for Continuous - Ordinal Variables
#'
#' @description This function calculates a \code{k_cont x k_cat} intermediate matrix of correlations for the \code{k_cont} continuous and
#' \code{k_cat} ordinal (r >= 2 categories) variables. It extends the method of Demirtas et al. (2012, \doi{10.1198/tast.2011.10090})
#' in simulating binary and non-normal data using the Fleishman transformation by:
#'
#' 1) allowing the continuous variables to be generated via Fleishman's third-order or Headrick's fifth-order transformation, and
#'
#' 2) allowing for ordinal variables with more than 2 categories.
#'
#' Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable transformed using Headrick's
#' fifth-order or Fleishman's third-order method to produce a continuous variable Y1, and Z2 is the standard normal variable
#' discretized to produce an ordinal variable Y2) is calculated by dividing the target correlation by a correction factor. The
#' correction factor is the product of the point-polyserial correlation between Y2 and Z2 (described in Olsson et al., 1982,
#' \doi{10.1007/BF02294164})
#' and the power method correlation (described in Headrick & Kowalchuk, 2007, \doi{10.1080/10629360600605065}) between Y1 and Z1.
#' The point-polyserial correlation is given by:
#' \deqn{\rho_{y2,z2} = (1/\sigma_{y2})*\sum_{j = 1}^{r-1} \phi(\tau_{j})(y2_{j+1} - y2_{j})} where
#' \deqn{\phi(\tau) = (2\pi)^{-1/2}*exp(-\tau^2/2)} Here, \eqn{y_{j}} is the j-th support
#' value and \eqn{\tau_{j}} is \eqn{\Phi^{-1}(\sum_{i=1}^{j} Pr(Y = y_{i}))}. The power method correlation is given by:
#' \deqn{\rho_{y1,z1} = c1 + 3c3 + 15c5} where c5 = 0 if \code{method} = "Fleishman". The function is used in
#' \code{\link[SimMultiCorrData]{findintercorr}} and
#' \code{\link[SimMultiCorrData]{findintercorr2}}. This function would not ordinarily be called by the user.
#'
#' @param method the method used to generate the k_cont continuous variables. "Fleishman" uses a third-order polynomial transformation
#' and "Polynomial" uses Headrick's fifth-order transformation.
#' @param constants a matrix with \code{k_cont} rows, each a vector of constants c0, c1, c2, c3 (if \code{method} = "Fleishman") or
#' c0, c1, c2, c3, c4, c5 (if \code{method} = "Polynomial"), like that returned by
#' \code{\link[SimMultiCorrData]{find_constants}}
#' @param rho_cont_cat a \code{k_cont x k_cat} matrix of target correlations among continuous and ordinal variables
#' @param marginal a list of length equal to \code{k_cat}; the i-th element is a vector of the cumulative
#' probabilities defining the marginal distribution of the i-th variable;
#' if the variable can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to be 1)
#' @param support a list of length equal to \code{k_cat}; the i-th element is a vector of containing the r
#' ordered support values
#' @export
#' @keywords intermediate, correlation, continuous, ordinal, Fleishman, Headrick
#' @seealso \code{\link[SimMultiCorrData]{power_norm_corr}}, \code{\link[SimMultiCorrData]{find_constants}},
#' \code{\link[SimMultiCorrData]{findintercorr}}, \code{\link[SimMultiCorrData]{findintercorr2}}
#' @return a \code{k_cont x k_cat} matrix whose rows represent the \code{k_cont} continuous variables and columns represent
#' the \code{k_cat} ordinal variables
#' @references
#' Demirtas H, Hedeker D, & Mermelstein RJ (2012). Simulation of massive public health data by power polynomials.
#' Statistics in Medicine, 31(27): 3337-3346. \doi{10.1002/sim.5362}.
#'
#' Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43, 521-532. \doi{10.1007/BF02293811}.
#'
#' Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Multivariate
#' Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711. \doi{10.1016/S0167-9473(02)00072-5}.
#' (\href{http://www.sciencedirect.com/science/article/pii/S0167947302000725}{ScienceDirect})
#'
#' Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Distributions.
#' Journal of Modern Applied Statistical Methods, 3(1), 65-71. \doi{10.22237/jmasm/1083370080}.
#'
#' Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Density Function, Distribution
#' Function, and Its Further Use for Fitting Data. Journal of Statistical Computation and Simulation, 77, 229-249. \doi{10.1080/10629360600605065}.
#'
#' Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending the Fleishman Power
#' Method. Psychometrika, 64, 25-35. \doi{10.1007/BF02294317}.
#'
#' Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power Method Transformation Using
#' Mathematica. Journal of Statistical Software, 19(3), 1 - 17. \doi{10.18637/jss.v019.i03}.
#'
#' Olsson U, Drasgow F, & Dorans NJ (1982). The Polyserial Correlation Coefficient. Psychometrika, 47(3): 337-47.
#' \doi{10.1007/BF02294164}.
#'
findintercorr_cont_cat <- function(method = c("Fleishman", "Polynomial"),
constants, rho_cont_cat, marginal,
support) {
Sigma_cont_cat <- matrix(1, nrow = nrow(rho_cont_cat),
ncol = ncol(rho_cont_cat))
for (i in 1:nrow(rho_cont_cat)) {
for (j in 1:ncol(rho_cont_cat)) {
Sigma_cont_cat[i, j] <-
(rho_cont_cat[i, j] *
sqrt(var_cat(marginal[[j]],
support[[j]])))/(denom_corr_cat(marginal[[j]],
support[[j]]) *
power_norm_corr(constants[i, ],
method))
}
}
return(Sigma_cont_cat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.