Nothing
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Operations supported on RDDs contains pairs (i.e key, value)
#' @include generics.R jobj.R RDD.R
NULL
############ Actions and Transformations ############
#' Look up elements of a key in an RDD
#'
#' @description
#' \code{lookup} returns a list of values in this RDD for key key.
#'
#' @param x The RDD to collect
#' @param key The key to look up for
#' @return a list of values in this RDD for key key
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(c(1, 1), c(2, 2), c(1, 3))
#' rdd <- parallelize(sc, pairs)
#' lookup(rdd, 1) # list(1, 3)
#'}
# nolint end
#' @rdname lookup
#' @aliases lookup,RDD-method
#' @noRd
setMethod("lookup",
signature(x = "RDD", key = "ANY"),
function(x, key) {
partitionFunc <- function(part) {
filtered <- part[unlist(lapply(part, function(i) { identical(key, i[[1]]) }))]
lapply(filtered, function(i) { i[[2]] })
}
valsRDD <- lapplyPartition(x, partitionFunc)
collectRDD(valsRDD)
})
#' Count the number of elements for each key, and return the result to the
#' master as lists of (key, count) pairs.
#'
#' Same as countByKey in Spark.
#'
#' @param x The RDD to count keys.
#' @return list of (key, count) pairs, where count is number of each key in rdd.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(c("a", 1), c("b", 1), c("a", 1)))
#' countByKey(rdd) # ("a", 2L), ("b", 1L)
#'}
# nolint end
#' @rdname countByKey
#' @aliases countByKey,RDD-method
#' @noRd
setMethod("countByKey",
signature(x = "RDD"),
function(x) {
keys <- lapply(x, function(item) { item[[1]] })
countByValue(keys)
})
#' Return an RDD with the keys of each tuple.
#'
#' @param x The RDD from which the keys of each tuple is returned.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(1, 2), list(3, 4)))
#' collectRDD(keys(rdd)) # list(1, 3)
#'}
# nolint end
#' @rdname keys
#' @aliases keys,RDD
#' @noRd
setMethod("keys",
signature(x = "RDD"),
function(x) {
func <- function(k) {
k[[1]]
}
lapply(x, func)
})
#' Return an RDD with the values of each tuple.
#'
#' @param x The RDD from which the values of each tuple is returned.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(1, 2), list(3, 4)))
#' collectRDD(values(rdd)) # list(2, 4)
#'}
# nolint end
#' @rdname values
#' @aliases values,RDD
#' @noRd
setMethod("values",
signature(x = "RDD"),
function(x) {
func <- function(v) {
v[[2]]
}
lapply(x, func)
})
#' Applies a function to all values of the elements, without modifying the keys.
#'
#' The same as `mapValues()' in Spark.
#'
#' @param X The RDD to apply the transformation.
#' @param FUN the transformation to apply on the value of each element.
#' @return a new RDD created by the transformation.
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, 1:10)
#' makePairs <- lapply(rdd, function(x) { list(x, x) })
#' collectRDD(mapValues(makePairs, function(x) { x * 2) })
#' Output: list(list(1,2), list(2,4), list(3,6), ...)
#'}
#' @rdname mapValues
#' @aliases mapValues,RDD,function-method
#' @noRd
setMethod("mapValues",
signature(X = "RDD", FUN = "function"),
function(X, FUN) {
func <- function(x) {
list(x[[1]], FUN(x[[2]]))
}
lapply(X, func)
})
#' Pass each value in the key-value pair RDD through a flatMap function without
#' changing the keys; this also retains the original RDD's partitioning.
#'
#' The same as 'flatMapValues()' in Spark.
#'
#' @param X The RDD to apply the transformation.
#' @param FUN the transformation to apply on the value of each element.
#' @return a new RDD created by the transformation.
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(1, c(1,2)), list(2, c(3,4))))
#' collectRDD(flatMapValues(rdd, function(x) { x }))
#' Output: list(list(1,1), list(1,2), list(2,3), list(2,4))
#'}
#' @rdname flatMapValues
#' @aliases flatMapValues,RDD,function-method
#' @noRd
setMethod("flatMapValues",
signature(X = "RDD", FUN = "function"),
function(X, FUN) {
flatMapFunc <- function(x) {
lapply(FUN(x[[2]]), function(v) { list(x[[1]], v) })
}
flatMap(X, flatMapFunc)
})
############ Shuffle Functions ############
#' Partition an RDD by key
#'
#' This function operates on RDDs where every element is of the form list(K, V) or c(K, V).
#' For each element of this RDD, the partitioner is used to compute a hash
#' function and the RDD is partitioned using this hash value.
#'
#' @param x The RDD to partition. Should be an RDD where each element is
#' list(K, V) or c(K, V).
#' @param numPartitions Number of partitions to create.
#' @param ... Other optional arguments to partitionBy.
#'
#' @param partitionFunc The partition function to use. Uses a default hashCode
#' function if not provided
#' @return An RDD partitioned using the specified partitioner.
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(list(1, 2), list(1.1, 3), list(1, 4))
#' rdd <- parallelize(sc, pairs)
#' parts <- partitionByRDD(rdd, 2L)
#' collectPartition(parts, 0L) # First partition should contain list(1, 2) and list(1, 4)
#'}
#' @rdname partitionBy
#' @aliases partitionBy,RDD,integer-method
#' @noRd
setMethod("partitionByRDD",
signature(x = "RDD"),
function(x, numPartitions, partitionFunc = hashCode) {
stopifnot(is.numeric(numPartitions))
partitionFunc <- cleanClosure(partitionFunc)
serializedHashFuncBytes <- serialize(partitionFunc, connection = NULL)
packageNamesArr <- serialize(.sparkREnv$.packages,
connection = NULL)
broadcastArr <- lapply(ls(.broadcastNames),
function(name) { get(name, .broadcastNames) })
jrdd <- getJRDD(x)
# We create a PairwiseRRDD that extends RDD[(Int, Array[Byte])],
# where the key is the target partition number, the value is
# the content (key-val pairs).
pairwiseRRDD <- newJObject("org.apache.spark.api.r.PairwiseRRDD",
callJMethod(jrdd, "rdd"),
numToInt(numPartitions),
serializedHashFuncBytes,
getSerializedMode(x),
packageNamesArr,
broadcastArr,
callJMethod(jrdd, "classTag"))
# Create a corresponding partitioner.
rPartitioner <- newJObject("org.apache.spark.HashPartitioner",
numToInt(numPartitions))
# Call partitionBy on the obtained PairwiseRDD.
javaPairRDD <- callJMethod(pairwiseRRDD, "asJavaPairRDD")
javaPairRDD <- callJMethod(javaPairRDD, "partitionBy", rPartitioner)
# Call .values() on the result to get back the final result, the
# shuffled actual content key-val pairs.
r <- callJMethod(javaPairRDD, "values")
RDD(r, serializedMode = "byte")
})
#' Group values by key
#'
#' This function operates on RDDs where every element is of the form list(K, V) or c(K, V).
#' and group values for each key in the RDD into a single sequence.
#'
#' @param x The RDD to group. Should be an RDD where each element is
#' list(K, V) or c(K, V).
#' @param numPartitions Number of partitions to create.
#' @return An RDD where each element is list(K, list(V))
#' @seealso reduceByKey
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(list(1, 2), list(1.1, 3), list(1, 4))
#' rdd <- parallelize(sc, pairs)
#' parts <- groupByKey(rdd, 2L)
#' grouped <- collectRDD(parts)
#' grouped[[1]] # Should be a list(1, list(2, 4))
#'}
#' @rdname groupByKey
#' @aliases groupByKey,RDD,integer-method
#' @noRd
setMethod("groupByKey",
signature(x = "RDD", numPartitions = "numeric"),
function(x, numPartitions) {
shuffled <- partitionByRDD(x, numPartitions)
groupVals <- function(part) {
vals <- new.env()
keys <- new.env()
pred <- function(item) exists(item$hash, keys)
appendList <- function(acc, i) {
addItemToAccumulator(acc, i)
acc
}
makeList <- function(i) {
acc <- initAccumulator()
addItemToAccumulator(acc, i)
acc
}
# Each item in the partition is list of (K, V)
lapply(part,
function(item) {
item$hash <- as.character(hashCode(item[[1]]))
updateOrCreatePair(item, keys, vals, pred,
appendList, makeList)
})
# extract out data field
vals <- eapply(vals,
function(i) {
length(i$data) <- i$counter
i$data
})
# Every key in the environment contains a list
# Convert that to list(K, Seq[V])
convertEnvsToList(keys, vals)
}
lapplyPartition(shuffled, groupVals)
})
#' Merge values by key
#'
#' This function operates on RDDs where every element is of the form list(K, V) or c(K, V).
#' and merges the values for each key using an associative and commutative reduce function.
#'
#' @param x The RDD to reduce by key. Should be an RDD where each element is
#' list(K, V) or c(K, V).
#' @param combineFunc The associative and commutative reduce function to use.
#' @param numPartitions Number of partitions to create.
#' @return An RDD where each element is list(K, V') where V' is the merged
#' value
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(list(1, 2), list(1.1, 3), list(1, 4))
#' rdd <- parallelize(sc, pairs)
#' parts <- reduceByKey(rdd, "+", 2L)
#' reduced <- collectRDD(parts)
#' reduced[[1]] # Should be a list(1, 6)
#'}
#' @rdname reduceByKey
#' @aliases reduceByKey,RDD,integer-method
#' @noRd
setMethod("reduceByKey",
signature(x = "RDD", combineFunc = "ANY", numPartitions = "numeric"),
function(x, combineFunc, numPartitions) {
reduceVals <- function(part) {
vals <- new.env()
keys <- new.env()
pred <- function(item) exists(item$hash, keys)
lapply(part,
function(item) {
item$hash <- as.character(hashCode(item[[1]]))
updateOrCreatePair(item, keys, vals, pred, combineFunc, identity)
})
convertEnvsToList(keys, vals)
}
locallyReduced <- lapplyPartition(x, reduceVals)
shuffled <- partitionByRDD(locallyReduced, numToInt(numPartitions))
lapplyPartition(shuffled, reduceVals)
})
#' Merge values by key locally
#'
#' This function operates on RDDs where every element is of the form list(K, V) or c(K, V).
#' and merges the values for each key using an associative and commutative reduce function, but
#' return the results immediately to the driver as an R list.
#'
#' @param x The RDD to reduce by key. Should be an RDD where each element is
#' list(K, V) or c(K, V).
#' @param combineFunc The associative and commutative reduce function to use.
#' @return A list of elements of type list(K, V') where V' is the merged value for each key
#' @seealso reduceByKey
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(list(1, 2), list(1.1, 3), list(1, 4))
#' rdd <- parallelize(sc, pairs)
#' reduced <- reduceByKeyLocally(rdd, "+")
#' reduced # list(list(1, 6), list(1.1, 3))
#'}
# nolint end
#' @rdname reduceByKeyLocally
#' @aliases reduceByKeyLocally,RDD,integer-method
#' @noRd
setMethod("reduceByKeyLocally",
signature(x = "RDD", combineFunc = "ANY"),
function(x, combineFunc) {
reducePart <- function(part) {
vals <- new.env()
keys <- new.env()
pred <- function(item) exists(item$hash, keys)
lapply(part,
function(item) {
item$hash <- as.character(hashCode(item[[1]]))
updateOrCreatePair(item, keys, vals, pred, combineFunc, identity)
})
list(list(keys, vals)) # return hash to avoid re-compute in merge
}
mergeParts <- function(accum, x) {
pred <- function(item) {
exists(item$hash, accum[[1]])
}
lapply(ls(x[[1]]),
function(name) {
item <- list(x[[1]][[name]], x[[2]][[name]])
item$hash <- name
updateOrCreatePair(item, accum[[1]], accum[[2]], pred, combineFunc, identity)
})
accum
}
reduced <- mapPartitions(x, reducePart)
merged <- reduce(reduced, mergeParts)
convertEnvsToList(merged[[1]], merged[[2]])
})
#' Combine values by key
#'
#' Generic function to combine the elements for each key using a custom set of
#' aggregation functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)],
#' for a "combined type" C. Note that V and C can be different -- for example, one
#' might group an RDD of type (Int, Int) into an RDD of type (Int, Seq[Int]).
#' Users provide three functions:
#' \itemize{
#' \item createCombiner, which turns a V into a C (e.g., creates a one-element list)
#' \item mergeValue, to merge a V into a C (e.g., adds it to the end of a list) -
#' \item mergeCombiners, to combine two C's into a single one (e.g., concatenates
#' two lists).
#' }
#'
#' @param x The RDD to combine. Should be an RDD where each element is
#' list(K, V) or c(K, V).
#' @param createCombiner Create a combiner (C) given a value (V)
#' @param mergeValue Merge the given value (V) with an existing combiner (C)
#' @param mergeCombiners Merge two combiners and return a new combiner
#' @param numPartitions Number of partitions to create.
#' @return An RDD where each element is list(K, C) where C is the combined type
#' @seealso groupByKey, reduceByKey
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' pairs <- list(list(1, 2), list(1.1, 3), list(1, 4))
#' rdd <- parallelize(sc, pairs)
#' parts <- combineByKey(rdd, function(x) { x }, "+", "+", 2L)
#' combined <- collectRDD(parts)
#' combined[[1]] # Should be a list(1, 6)
#'}
# nolint end
#' @rdname combineByKey
#' @aliases combineByKey,RDD,ANY,ANY,ANY,integer-method
#' @noRd
setMethod("combineByKey",
signature(x = "RDD", createCombiner = "ANY", mergeValue = "ANY",
mergeCombiners = "ANY", numPartitions = "numeric"),
function(x, createCombiner, mergeValue, mergeCombiners, numPartitions) {
combineLocally <- function(part) {
combiners <- new.env()
keys <- new.env()
pred <- function(item) exists(item$hash, keys)
lapply(part,
function(item) {
item$hash <- as.character(hashCode(item[[1]]))
updateOrCreatePair(item, keys, combiners, pred, mergeValue, createCombiner)
})
convertEnvsToList(keys, combiners)
}
locallyCombined <- lapplyPartition(x, combineLocally)
shuffled <- partitionByRDD(locallyCombined, numToInt(numPartitions))
mergeAfterShuffle <- function(part) {
combiners <- new.env()
keys <- new.env()
pred <- function(item) exists(item$hash, keys)
lapply(part,
function(item) {
item$hash <- as.character(hashCode(item[[1]]))
updateOrCreatePair(item, keys, combiners, pred, mergeCombiners, identity)
})
convertEnvsToList(keys, combiners)
}
lapplyPartition(shuffled, mergeAfterShuffle)
})
#' Aggregate a pair RDD by each key.
#'
#' Aggregate the values of each key in an RDD, using given combine functions
#' and a neutral "zero value". This function can return a different result type,
#' U, than the type of the values in this RDD, V. Thus, we need one operation
#' for merging a V into a U and one operation for merging two U's, The former
#' operation is used for merging values within a partition, and the latter is
#' used for merging values between partitions. To avoid memory allocation, both
#' of these functions are allowed to modify and return their first argument
#' instead of creating a new U.
#'
#' @param x An RDD.
#' @param zeroValue A neutral "zero value".
#' @param seqOp A function to aggregate the values of each key. It may return
#' a different result type from the type of the values.
#' @param combOp A function to aggregate results of seqOp.
#' @return An RDD containing the aggregation result.
#' @seealso foldByKey, combineByKey
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(1, 1), list(1, 2), list(2, 3), list(2, 4)))
#' zeroValue <- list(0, 0)
#' seqOp <- function(x, y) { list(x[[1]] + y, x[[2]] + 1) }
#' combOp <- function(x, y) { list(x[[1]] + y[[1]], x[[2]] + y[[2]]) }
#' aggregateByKey(rdd, zeroValue, seqOp, combOp, 2L)
#' # list(list(1, list(3, 2)), list(2, list(7, 2)))
#'}
# nolint end
#' @rdname aggregateByKey
#' @aliases aggregateByKey,RDD,ANY,ANY,ANY,integer-method
#' @noRd
setMethod("aggregateByKey",
signature(x = "RDD", zeroValue = "ANY", seqOp = "ANY",
combOp = "ANY", numPartitions = "numeric"),
function(x, zeroValue, seqOp, combOp, numPartitions) {
createCombiner <- function(v) {
do.call(seqOp, list(zeroValue, v))
}
combineByKey(x, createCombiner, seqOp, combOp, numPartitions)
})
#' Fold a pair RDD by each key.
#'
#' Aggregate the values of each key in an RDD, using an associative function "func"
#' and a neutral "zero value" which may be added to the result an arbitrary
#' number of times, and must not change the result (e.g., 0 for addition, or
#' 1 for multiplication.).
#'
#' @param x An RDD.
#' @param zeroValue A neutral "zero value".
#' @param func An associative function for folding values of each key.
#' @return An RDD containing the aggregation result.
#' @seealso aggregateByKey, combineByKey
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(1, 1), list(1, 2), list(2, 3), list(2, 4)))
#' foldByKey(rdd, 0, "+", 2L) # list(list(1, 3), list(2, 7))
#'}
# nolint end
#' @rdname foldByKey
#' @aliases foldByKey,RDD,ANY,ANY,integer-method
#' @noRd
setMethod("foldByKey",
signature(x = "RDD", zeroValue = "ANY",
func = "ANY", numPartitions = "numeric"),
function(x, zeroValue, func, numPartitions) {
aggregateByKey(x, zeroValue, func, func, numPartitions)
})
############ Binary Functions #############
#' Join two RDDs
#'
#' @description
#' \code{join} This function joins two RDDs where every element is of the form list(K, V).
#' The key types of the two RDDs should be the same.
#'
#' @param x An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param y An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param numPartitions Number of partitions to create.
#' @return a new RDD containing all pairs of elements with matching keys in
#' two input RDDs.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list(1, 1), list(2, 4)))
#' rdd2 <- parallelize(sc, list(list(1, 2), list(1, 3)))
#' joinRDD(rdd1, rdd2, 2L) # list(list(1, list(1, 2)), list(1, list(1, 3))
#'}
# nolint end
#' @rdname join-methods
#' @aliases join,RDD,RDD-method
#' @noRd
setMethod("joinRDD",
signature(x = "RDD", y = "RDD"),
function(x, y, numPartitions) {
xTagged <- lapply(x, function(i) { list(i[[1]], list(1L, i[[2]])) })
yTagged <- lapply(y, function(i) { list(i[[1]], list(2L, i[[2]])) })
doJoin <- function(v) {
joinTaggedList(v, list(FALSE, FALSE))
}
joined <- flatMapValues(groupByKey(unionRDD(xTagged, yTagged), numPartitions),
doJoin)
})
#' Left outer join two RDDs
#'
#' @description
#' \code{leftouterjoin} This function left-outer-joins two RDDs where every element is of
#' the form list(K, V). The key types of the two RDDs should be the same.
#'
#' @param x An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param y An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param numPartitions Number of partitions to create.
#' @return For each element (k, v) in x, the resulting RDD will either contain
#' all pairs (k, (v, w)) for (k, w) in rdd2, or the pair (k, (v, NULL))
#' if no elements in rdd2 have key k.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list(1, 1), list(2, 4)))
#' rdd2 <- parallelize(sc, list(list(1, 2), list(1, 3)))
#' leftOuterJoin(rdd1, rdd2, 2L)
#' # list(list(1, list(1, 2)), list(1, list(1, 3)), list(2, list(4, NULL)))
#'}
# nolint end
#' @rdname join-methods
#' @aliases leftOuterJoin,RDD,RDD-method
#' @noRd
setMethod("leftOuterJoin",
signature(x = "RDD", y = "RDD", numPartitions = "numeric"),
function(x, y, numPartitions) {
xTagged <- lapply(x, function(i) { list(i[[1]], list(1L, i[[2]])) })
yTagged <- lapply(y, function(i) { list(i[[1]], list(2L, i[[2]])) })
doJoin <- function(v) {
joinTaggedList(v, list(FALSE, TRUE))
}
joined <- flatMapValues(groupByKey(unionRDD(xTagged, yTagged), numPartitions), doJoin)
})
#' Right outer join two RDDs
#'
#' @description
#' \code{rightouterjoin} This function right-outer-joins two RDDs where every element is of
#' the form list(K, V). The key types of the two RDDs should be the same.
#'
#' @param x An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param y An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param numPartitions Number of partitions to create.
#' @return For each element (k, w) in y, the resulting RDD will either contain
#' all pairs (k, (v, w)) for (k, v) in x, or the pair (k, (NULL, w))
#' if no elements in x have key k.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list(1, 2), list(1, 3)))
#' rdd2 <- parallelize(sc, list(list(1, 1), list(2, 4)))
#' rightOuterJoin(rdd1, rdd2, 2L)
#' # list(list(1, list(2, 1)), list(1, list(3, 1)), list(2, list(NULL, 4)))
#'}
# nolint end
#' @rdname join-methods
#' @aliases rightOuterJoin,RDD,RDD-method
#' @noRd
setMethod("rightOuterJoin",
signature(x = "RDD", y = "RDD", numPartitions = "numeric"),
function(x, y, numPartitions) {
xTagged <- lapply(x, function(i) { list(i[[1]], list(1L, i[[2]])) })
yTagged <- lapply(y, function(i) { list(i[[1]], list(2L, i[[2]])) })
doJoin <- function(v) {
joinTaggedList(v, list(TRUE, FALSE))
}
joined <- flatMapValues(groupByKey(unionRDD(xTagged, yTagged), numPartitions), doJoin)
})
#' Full outer join two RDDs
#'
#' @description
#' \code{fullouterjoin} This function full-outer-joins two RDDs where every element is of
#' the form list(K, V). The key types of the two RDDs should be the same.
#'
#' @param x An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param y An RDD to be joined. Should be an RDD where each element is
#' list(K, V).
#' @param numPartitions Number of partitions to create.
#' @return For each element (k, v) in x and (k, w) in y, the resulting RDD
#' will contain all pairs (k, (v, w)) for both (k, v) in x and
#' (k, w) in y, or the pair (k, (NULL, w))/(k, (v, NULL)) if no elements
#' in x/y have key k.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list(1, 2), list(1, 3), list(3, 3)))
#' rdd2 <- parallelize(sc, list(list(1, 1), list(2, 4)))
#' fullOuterJoin(rdd1, rdd2, 2L) # list(list(1, list(2, 1)),
#' # list(1, list(3, 1)),
#' # list(2, list(NULL, 4)))
#' # list(3, list(3, NULL)),
#'}
# nolint end
#' @rdname join-methods
#' @aliases fullOuterJoin,RDD,RDD-method
#' @noRd
setMethod("fullOuterJoin",
signature(x = "RDD", y = "RDD", numPartitions = "numeric"),
function(x, y, numPartitions) {
xTagged <- lapply(x, function(i) { list(i[[1]], list(1L, i[[2]])) })
yTagged <- lapply(y, function(i) { list(i[[1]], list(2L, i[[2]])) })
doJoin <- function(v) {
joinTaggedList(v, list(TRUE, TRUE))
}
joined <- flatMapValues(groupByKey(unionRDD(xTagged, yTagged), numPartitions), doJoin)
})
#' For each key k in several RDDs, return a resulting RDD that
#' whose values are a list of values for the key in all RDDs.
#'
#' @param ... Several RDDs.
#' @param numPartitions Number of partitions to create.
#' @return a new RDD containing all pairs of elements with values in a list
#' in all RDDs.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list(1, 1), list(2, 4)))
#' rdd2 <- parallelize(sc, list(list(1, 2), list(1, 3)))
#' cogroup(rdd1, rdd2, numPartitions = 2L)
#' # list(list(1, list(1, list(2, 3))), list(2, list(list(4), list()))
#'}
# nolint end
#' @rdname cogroup
#' @aliases cogroup,RDD-method
#' @noRd
setMethod("cogroup",
"RDD",
function(..., numPartitions) {
rdds <- list(...)
rddsLen <- length(rdds)
for (i in 1:rddsLen) {
rdds[[i]] <- lapply(rdds[[i]],
function(x) { list(x[[1]], list(i, x[[2]])) })
}
union.rdd <- Reduce(unionRDD, rdds)
group.func <- function(vlist) {
res <- list()
length(res) <- rddsLen
for (x in vlist) {
i <- x[[1]]
acc <- res[[i]]
# Create an accumulator.
if (is.null(acc)) {
acc <- initAccumulator()
}
addItemToAccumulator(acc, x[[2]])
res[[i]] <- acc
}
lapply(res, function(acc) {
if (is.null(acc)) {
list()
} else {
acc$data
}
})
}
cogroup.rdd <- mapValues(groupByKey(union.rdd, numPartitions),
group.func)
})
#' Sort a (k, v) pair RDD by k.
#'
#' @param x A (k, v) pair RDD to be sorted.
#' @param ascending A flag to indicate whether the sorting is ascending or descending.
#' @param numPartitions Number of partitions to create.
#' @return An RDD where all (k, v) pair elements are sorted.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, list(list(3, 1), list(2, 2), list(1, 3)))
#' collectRDD(sortByKey(rdd)) # list (list(1, 3), list(2, 2), list(3, 1))
#'}
# nolint end
#' @rdname sortByKey
#' @aliases sortByKey,RDD,RDD-method
#' @noRd
setMethod("sortByKey",
signature(x = "RDD"),
function(x, ascending = TRUE, numPartitions = SparkR:::getNumPartitionsRDD(x)) {
rangeBounds <- list()
if (numPartitions > 1) {
rddSize <- countRDD(x)
# constant from Spark's RangePartitioner
maxSampleSize <- numPartitions * 20
fraction <- min(maxSampleSize / max(rddSize, 1), 1.0)
samples <- collectRDD(keys(sampleRDD(x, FALSE, fraction, 1L)))
# Note: the built-in R sort() function only works on atomic vectors
samples <- sort(unlist(samples, recursive = FALSE), decreasing = !ascending)
if (length(samples) > 0) {
rangeBounds <- lapply(seq_len(numPartitions - 1),
function(i) {
j <- ceiling(length(samples) * i / numPartitions)
samples[j]
})
}
}
rangePartitionFunc <- function(key) {
partition <- 0
# TODO: Use binary search instead of linear search, similar with Spark
while (partition < length(rangeBounds) && key > rangeBounds[[partition + 1]]) {
partition <- partition + 1
}
if (ascending) {
partition
} else {
numPartitions - partition - 1
}
}
partitionFunc <- function(part) {
sortKeyValueList(part, decreasing = !ascending)
}
newRDD <- partitionByRDD(x, numPartitions, rangePartitionFunc)
lapplyPartition(newRDD, partitionFunc)
})
#' Subtract a pair RDD with another pair RDD.
#'
#' Return an RDD with the pairs from x whose keys are not in other.
#'
#' @param x An RDD.
#' @param other An RDD.
#' @param numPartitions Number of the partitions in the result RDD.
#' @return An RDD with the pairs from x whose keys are not in other.
#' @examples
# nolint start
#'\dontrun{
#' sc <- sparkR.init()
#' rdd1 <- parallelize(sc, list(list("a", 1), list("b", 4),
#' list("b", 5), list("a", 2)))
#' rdd2 <- parallelize(sc, list(list("a", 3), list("c", 1)))
#' collectRDD(subtractByKey(rdd1, rdd2))
#' # list(list("b", 4), list("b", 5))
#'}
# nolint end
#' @rdname subtractByKey
#' @aliases subtractByKey,RDD
#' @noRd
setMethod("subtractByKey",
signature(x = "RDD", other = "RDD"),
function(x, other, numPartitions = SparkR:::getNumPartitionsRDD(x)) {
filterFunction <- function(elem) {
iters <- elem[[2]]
(length(iters[[1]]) > 0) && (length(iters[[2]]) == 0)
}
flatMapValues(filterRDD(cogroup(x,
other,
numPartitions = numPartitions),
filterFunction),
function(v) { v[[1]] })
})
#' Return a subset of this RDD sampled by key.
#'
#' @description
#' \code{sampleByKey} Create a sample of this RDD using variable sampling rates
#' for different keys as specified by fractions, a key to sampling rate map.
#'
#' @param x The RDD to sample elements by key, where each element is
#' list(K, V) or c(K, V).
#' @param withReplacement Sampling with replacement or not
#' @param fraction The (rough) sample target fraction
#' @param seed Randomness seed value
#' @examples
#'\dontrun{
#' sc <- sparkR.init()
#' rdd <- parallelize(sc, 1:3000)
#' pairs <- lapply(rdd, function(x) { if (x %% 3 == 0) list("a", x)
#' else { if (x %% 3 == 1) list("b", x) else list("c", x) }})
#' fractions <- list(a = 0.2, b = 0.1, c = 0.3)
#' sample <- sampleByKey(pairs, FALSE, fractions, 1618L)
#' 100 < length(lookup(sample, "a")) && 300 > length(lookup(sample, "a")) # TRUE
#' 50 < length(lookup(sample, "b")) && 150 > length(lookup(sample, "b")) # TRUE
#' 200 < length(lookup(sample, "c")) && 400 > length(lookup(sample, "c")) # TRUE
#' lookup(sample, "a")[which.min(lookup(sample, "a"))] >= 0 # TRUE
#' lookup(sample, "a")[which.max(lookup(sample, "a"))] <= 2000 # TRUE
#' lookup(sample, "b")[which.min(lookup(sample, "b"))] >= 0 # TRUE
#' lookup(sample, "b")[which.max(lookup(sample, "b"))] <= 2000 # TRUE
#' lookup(sample, "c")[which.min(lookup(sample, "c"))] >= 0 # TRUE
#' lookup(sample, "c")[which.max(lookup(sample, "c"))] <= 2000 # TRUE
#' fractions <- list(a = 0.2, b = 0.1, c = 0.3, d = 0.4)
#' sample <- sampleByKey(pairs, FALSE, fractions, 1618L) # Key "d" will be ignored
#' fractions <- list(a = 0.2, b = 0.1)
#' sample <- sampleByKey(pairs, FALSE, fractions, 1618L) # KeyError: "c"
#'}
#' @rdname sampleByKey
#' @aliases sampleByKey,RDD-method
#' @noRd
setMethod("sampleByKey",
signature(x = "RDD", withReplacement = "logical",
fractions = "vector", seed = "integer"),
function(x, withReplacement, fractions, seed) {
for (elem in fractions) {
if (elem < 0.0) {
stop("Negative fraction value ", fractions[which(fractions == elem)])
}
}
# The sampler: takes a partition and returns its sampled version.
samplingFunc <- function(partIndex, part) {
set.seed(bitwXor(seed, partIndex))
res <- vector("list", length(part))
len <- 0
# mixing because the initial seeds are close to each other
stats::runif(10)
for (elem in part) {
if (elem[[1]] %in% names(fractions)) {
frac <- as.numeric(fractions[which(elem[[1]] == names(fractions))])
if (withReplacement) {
count <- stats::rpois(1, frac)
if (count > 0) {
res[(len + 1) : (len + count)] <- rep(list(elem), count)
len <- len + count
}
} else {
if (stats::runif(1) < frac) {
len <- len + 1
res[[len]] <- elem
}
}
} else {
stop("KeyError: \"", elem[[1]], "\"")
}
}
# TODO(zongheng): look into the performance of the current
# implementation. Look into some iterator package? Note that
# Scala avoids many calls to creating an empty list and PySpark
# similarly achieves this using `yield'. (duplicated from sampleRDD)
if (len > 0) {
res[1:len]
} else {
list()
}
}
lapplyPartitionsWithIndex(x, samplingFunc)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.